
1

Building Highly-Interactive, Data-Intensive, REST
Applications: The Invenio Experience

Michelle Annett, Eleni Stroulia

{mkannett,stroulia}@cs.ualberta.ca

Department of Computing Science

 University of Alberta

Abstract

With the explosion of Web 2.0 ideas and technol-

ogies such as XML, REST, and RIAs (Rich Inter-

net Applications), developers are now creating

“mashup” applications that aggregate numerous

sources of information and promote rich user inte-

raction. Although many innovative mashups are

being created, there has been little research sys-

tematically examining which technologies to use

and how to design and implement such applica-

tions. We describe the features and complexity

inherent within a data-intensive, REST-based,

RIA entitled, Invenio. Invenio combines a variety

of different technologies (Yahoo! Maps, Amazon

Associates Web Service, REST, and the Flex

framework) to geographically visualize aggre-

gated music chart information. We report on our

experiences in designing and authoring Invenio,

use Invenio’s requirements as a case study to ex-

amine relevant technologies and recommend a set

of possible “best practices” for developing other

RIAs.

1 Introduction

As the size of the Internet dramatically increases

each year, so do its user’s demands. An Internet

user is no longer content interacting with static

HTML web pages or simple searching portals;

instead, users want applications and services that

promote collaboration and provide them with rich

content that can easily be manipulated. Given

Copyright 2008 Michelle Annett and Eleni Stroulia.

Permission to copy is hereby granted provided the orig-

inal copyright notice is reproduced in copies made.

these changes in Internet user’s usage preferences

and practices, it should come as no surprise that

the number of applications utilizing Web 2.0

technologies and ideas such as REST, “mashups”

and Rich Internet Application (RIA) frameworks

has dramatically increased.

Of these ideas, mashups and RIAs are proba-

bly foremost in the minds of users. Mashups are

web applications that aggregate multiple data

sources into one application. Although different in

many ways, most mashup applications contain the

following three elements: (a) one or more data

sources, (b) a website to display an interpretation

of the data sources, and (c) a client web browser,

which acts as the user interface for the website.

On the other hand, RIAs are web services that use

the web client to process a user interface and use

an application server to store program states and

user data that is generated. The proliferation of

accessible REST APIs and rich user-interface

frameworks that can run with zero installation

requirements on browser sandbox environments

greatly supports the development of highly inter-

active, web-based, data-exploration tools.

Given the fact that every web service or ap-

plications stores, retrieves and modifies data to

some capacity, it is surprising to find that there

are few recommendations or instructions in exis-

tence that explain which frameworks or APIs

work best. Without such information, deciding

upon the types of data visualizations to use, the

data sources (and their organizational structures)

and the affordances (or constraints) of user inte-

raction can lead to mass confusion and frustration

for developers and users alike. Many developers

end up utilizing a bricolage approach to design

and implementation, which ultimately wastes val-

uable time and resources. Not only does the

amount of time spent on a project increase, but the

2

number of “workarounds” or “hacks” that are

needed also increases (thereby making the

project’s code unnecessarily complex).

Sharing one’s experiences, either by provid-

ing documentation, recommendations, guidelines

or instructions, can potentially save everyone time

and effort. Providing detailed examples and justi-

fications for one’s work – as we do in this paper –

can not only help novel developers, but it can also

increase the quality of an expert’s work and in-

spire other developers to increase creativity within

their own applications. As well, we can use these

guidelines and recommendations to help push the

evolutionarily pace and optimality of technologies

forward, by constantly demanding more im-

provements and innovations in Web 2.0 technolo-

gies and illustrating the importance of cohesion

and interoperability between resources, frame-

works and APIs.

The remainder of this paper discusses the de-

sign rationales of a REST-based RIA service, In-

venio, and the experiences encountered during its

development. We discuss our motivation in

choosing the application domain and review re-

lated visualization and mashup research (Section

2), we then discuss the Invenio software architec-

ture (Section 3) and workflows (Section 4). Sec-

tion 5 concludes with our reflection on the lessons

we learned from the experience and our advice on

“good practices” for building REST-based RIA

applications using complex compositions of exist-

ing resources.

2 Motivation

Under the Web 2.0 umbrella, we now recognize a

collection of technologies that flexibly and crea-

tively support information sharing on the web.

On-line wikis, blogs, and RSS feeds have had an

immeasurable influence in various domains, as

they provide an easily accessible platform for

word-of-mouth advertising, online retail, product

research, and media sharing.

On the marketing/advertising front, it is inter-

esting to consider the celebrity gossip blog Pe-

rezHilton.com [1] whose founder, Mario

Lavandeira, started posting audio and video links

of his favorite unsigned or overseas artists such as

Leona Lewis, Amy Winehouse, and Mika on his

blog. Before his postings, each of these artists had

local “cult” followings, but after they were

blogged about, they obtained number one hits, top

album and singles downloads on Amazon and

iTunes, and cross-continental success. With re-

spect to retail and media sharing, the ever-

growing popularity of online digital media me-

chanisms, such as peer-to-peer networks, torrents,

and online music stores have shifted the impor-

tance of the Internet in music consumer’s pur-

chasing habits and the borderless selling of

products. From 2005 to 2007, there was a steady

decline in physical CD sales (-7.8%, -4.9%, and -

9.5%), and an astronomical increase in digital

album and single sales (+150%, +20.8%, and

+45%) [2,3,4]. Given these sales figures and the

compelling evidence for the impact of on-line

word-of-mouth, it should come as no surprise that

consumers are now, more than ever, looking at the

Internet as an influential source of music informa-

tion and recommendations.

Coupling the importance of the Internet for

consumers within the music domain with the pop-

ularity of RIAs and mashups, the authors have

chosen to create Invenio, a highly interactive,

data-intensive mashup service that uses geovisua-

lization techniques to facilitate the discovery of

new music by its users.

In looking at the geovisualization and ma-

shup work occurring in academia and industry,

there are a number of innovative projects that

have been pursued. Wood et al. have utilized a

geographic map with data dial overlays to demon-

strate the power of geovisualization mashups [5].

They have taken cell phone text message queries

sent to a popular cell phone provider and com-

bined them with Google Earth to assess trends in

text message queries. A data dial displays all of

the times of day that a query was made from a

specific location (Figure 1A). The angle of a line

leaving a specific point indicates the time that a

query was made and the length of the line indi-

cates the number of queries made at that time. In

contrast to Wood et al.’s “typical” geovisualiza-

tions, Kwan and Lee used two non-traditional

visualization techniques (linear and topography

inspired) to visualize a geo-coded (geographical

coordinates) data set that was composed of

129,000 human activities [6]. Using horizontal

and vertical lines (Figure 1B), as well as peaks

and valleys (Figure 1C), Kwan and Lee have ex-

tended the boundaries of geovisualization re-

search in a very creative direction. Although both

sets of researchers use different ways to express

temporal data (one in 3D and the other using 2D

dials), neither contain capabilities which might

allow one to discover trend patterns that occurred

3

over long periods of time, such as days or weeks.

This temporal dimension is something that we

have included within Invenio.

As illustrated in Table 1, there are a variety of

successful, online mashups that have been created

to visualize aggregate data. TubeMogul [7] pro-

vides users with a Google Map on which their

demographics are shown. Unfortunately, Tube-

Mogul does not utilize the full power and capabil-

ities that the map can provide: instead of enabling

interactivity with this map, the TubeMogul de-

signers have chosen to leave it static and to not

provide any way to determine the regional popu-

larity of one’s videos over time. The QLikView

Musiq Tracker [8] service does provide useful

information, but most often there is too much in-

formation presented in awkward or confusing

ways. The data is largely static and the interactive

functionality is very slow, leading to a very inef-

fective service. The use of color coding tech-

niques, additional pop-up tool tips and zooming

and filtering capabilities made the HealthMap

service [9] an excellent reference system to use

while designing and implementing Invenio.

3 Software Architecture

As Invenio is a Rich Internet Application, it uses

several technologies to visualize a rich set of spa-

tial data: the Flex framework, the Amazon Asso-

ciates REST service, and the Yahoo! Maps API.

Currently, the Invenio architecture consists of

the Web Interface, an external database, a REST

web service and two commercial web services.

The design and interactions between these com-

ponents will be discussed in Sections 3.1 – 3.5,

and the work processes and workflows of the sys-

tem will be discussed in Section 4.

3.1 The Data Resources

Because the most reputable source of music chart

information is not freely available (Neilson

SoundScan [10]), and there was not an alternative

free source, we had to collect our own data. To

this end, we researched which radio stations Niel-

sen SoundScan monitors to create the Billboard

Top 100 (freely available at [10]), checked each

of these radio stations to determine if they had a

weekly request chart on their website, and mined

the resulting 190 radio station’s websites for their

music charts each week, for a period of six weeks.

After each of the weekly chart files was re-

trieved, they were entered into a four-table

MySQL database. The first table is the producer

table; every artist that had a song on a chart dur-

ing the six-week period of data collection can be

found in this table. The next table was the product

table, which contains each of the songs that ap-

Service Purpose Visualization

Types

Interactive

Visualizations

Zooming /

Filtering

TubeMogul [7]

Deploys and tracks user created videos across

multiple websites (AOL, Google, MySpace, Ya-

hoo!,YouTube, Viddler)

Line chart, bar chart,

pie chart, Google

Map

None N/A

QLikView Musiq

Tracker [8]

Visualizes online and radio station airplay from

Mediaguide service

Line chart, bar chart,

pie chart, geographic

map

Charts – yes;

Geographic map – no

On some visualiza-

tions, yes

HealthMap [9]

Visualizes disease outbreak bulletins (Google

News, curated personal accounts, World Health

Organization official alerts) geographically

Google Map

Users click on map

markers to view

additional informa-

tion

Filter by disease

type , resource

provider

Table 1 - Commercial Mashup Services.

A)

B)

C)

Figure 1 - Geo-Spatial Visualizations from [5,6].

4

peared on a chart, accompanied by the artist who

performed the song. The third table in the schema

is the vendor table. This table was composed of

radio station name, code (which is a four charac-

ter unique identifier assigned to each North Amer-

ican radio station), and location information (state,

city, longitude and latitude). The last table in the

database schema is the chart event table. Each

row in the table contains a ‘chart event’, com-

posed of a song, an artist, a station, the date the

chart event occurred, and the chart placement of

the song.

3.2 XML Schema and REST APIs

Invenio was designed with the explicit objective

of being extensible, so that it can be utilized to

visualize other products, such as DVDs, books,

technology etc. To this end the XML Schema,

representing the underlying resource and support-

ing the REST API, was purposely created with

this extensibility in mind.

The schema is organized around five different

REST APIs. The GetProducers API returns an

XML document with a producerSet element as

the root. Contained within the root element are an

unbounded number of producerEntities (or artists)

from the producer database table. A producerEn-

tity is a “wrapper” element that contains a produ-

cerId and artist or producerName.

The resulting XML of the GetProducts API

mirrors the result of the GetProducers API. The

top-most element is a productSet and it contains

multiple productEntities. A productEntity con-

tains the productName or title of the product, (i.e.

the song title) and an identification number for the

product, which is used within the chart event table.

In keeping with Shneiderman’s Visual Infor-

mation Seeking principle [11], the GetGenre’s

API is used to “filter” the number of artists that

one can choose from. The schema specification of

this API’s XML results in a genreSet root entity

with a number of genreEntities, each of which

only contains a single element, the genre name.

In the same vein, the GetVendors API is spe-

cified by a vendorSet root element, populated with

vendorEntities (vendorId, vendorName, vendor-

Code, vendorSRC, and vendorLocale).

The last REST API, GetChartEvents, returns

a chartSet element, with an unbounded number of

chartEntity elements. No matter what products are

being monitored, whether it is book sales, search

results, or movies, there are four ‘generic sales’

elements, which must be present: the producer,

the product, the vendor and the date on which the

chart event was captured. A chartEntity element

captures each of these attributes in the XSD

schema.

The Invenio schema provides one with the

minimal amount of information necessary to geo-

graphically plot and deduce novel products or

trend information for a variety of product domains.

3.3 The GIS Framework: Yahoo!

Maps

We chose to use the Yahoo! Maps Developer API

and Yahoo! Maps Flex SWC (Version 3) as the

GIS framework underlying Invenio’s geography-

based music-trends tracking. We needed to have

the ability to recognize the user’s interaction with

the map and respond to it (by relaying the activity

and its parameters to the Flex control listeners),

and to create a variety of custom markers for dif-

ferent information-communication purposes (such

as artist album covers or multi colored circles to

illustrate different metrics). The Yahoo! Maps

API supports both of these requirements.

In a typical usage scenario, the user may se-

lect a variety of options, such as artist, song and

date. Next, Invenio accesses the data resource

through the REST GetChartEvents API to obtain

an XML list of chart events. This list is parsed to

obtain the radio stations latitude and longitude for

each chart event and the resulting values are

passed to the Yahoo! Map for plotting.

3.4 Amazon Associates Web Ser-

vice

The Amazon Associates Web Service is offered

free of charge by Amazon.com, to enable devel-

opers to query Amazon’s product catalog using a

variety of protocols: SOAP, REST and WSDL.

As most of the visualizations in Invenio

would benefit from the inclusion of details on-

demand, we felt that Amazon, which is one of the

largest online retailers, would be the most fitting

service to use to obtain this information. Every

time an artist’s album cover or additional album

information was needed, Amazon’s REST support

[12] was used to make an ItemSearch HTTPSer-

vice call (to Amazon’s Digital Music category of

products). Invenio is thus able to retrieve image

URLs and additional artist information such as

5

album release dates, prices, and editor’s reviews

using Amazon’s protocol.

3.5 The RIA Framework: Flex

The web interface was created using the Adobe

Flex programming environment and language. A

relatively new product, released in March 2004,

Adobe Flex is a collection of technologies that

support the creation of Rich Internet Applications

using the Macromedia Flash platform. A typical

application is built using either Adobe Flex

Builder 3, or the free Flex SDK. As pictured in

Figure 2, the Flex architecture and framework is

composed of three main components, roughly

corresponding to the three layers of a model-

view-controller architecture: MXML, Action-

Script and a Class Library.

The MXML or ‘Macromedia eXtensible

Markup Language’ is used to declaratively create

and manage all of the visual components that are

present in the user interface. Each of the compo-

nents in the MXML application layer is derived

from the Class Library. The Class Library con-

tains a plethora of display components (Accor-

dions, Menus, Data Grids, Titled Windows, and

Buttons) data types, effects (Zoom, Blur, and Dis-

solve), and charts that can be instantiated or ex-

tended to meet most developers’ needs. The Class

Library also contains elements that support HTTP

service calls, image loading, WSDL calls, and the

parsing of XML streams and RSS feeds.

Once an application has been created, it is

compiled into a .swf executable and deployed.

Using Flex there are two ways in which this com-

pilation and deployment can occur. As Figure 2

illustrates, all of the Flex Application Framework

components can be placed on a presentation serv-

er. This server contains Flex runtime services

which compiles the entire collection of framework

components present on the server into a .swf file

and then sends it to the client. The alternative to

this procedure is to create a .swf file within the

Flex Builder then place it on a pre-existing server.

Within the Invenio web interface (.swf file),

there are three main components: the display shelf

visualizations, the Yahoo! geographic map visua-

lization, and the Flex charting elements.

3.5.1 Display Shelf Components

Popularized by the Apple Mac OS operating sys-

tem, a display shelf is a horizontal (or less fre-

quently, vertical) visualization of a collection of

images displayed on animated tiles. The tile that

is largest and facing forward is the currently se-

lected tile; all of the unselected tiles are presented

in a smaller, semi-profile view (Figure 3).

Through the use of keyboard arrow keys, a con-

trol component (such as a slider or buttons) or the

mouse, a user can “flip” through each tile. Instead

of implementing textual tables or charts within

Invenio and having a consumer view an endless

array of forgettable textual information, the visual

prowess that display shelves possess was used

with the hope of boosting recall and assisting vi-

sually minded people in discovering new music.

This unique, visual medium clearly communicates

to the user (and music consumer) the temporal

movement of an artist’s song across many weeks

in an innovative, intuitive manner.

3.5.2 Geovisualization

Using the Yahoo! Map and Flex framework, In-

venio offers a variety of temporally static and

dynamic geovisualizations. Each geovisualization

was designed to provide a user with (a) a general

overview of the spatial data that was collected,

Figure 2 - Flex framework from [13].

Figure 3 – Invenio display shelf window.

6

and (b) the opportunity to facilitate understanding

by “drilling down” and manipulating the visuali-

zations using Yahoo! Map controls or the pro-

vided Flex components. We hypothesize that

using a geographic dimension to browse this type

of information should help users to discover pat-

terns that they would not normally see in a textual

print out of the information or by viewing a large

collection of web pages. A user can potentially

mentally cluster all the information they see and

then create a rich mental model of the data that

has been visualized. This mental model can help

one to conjure hypotheses and ideas about trends

that are occurring over time with respect to new

or popular artists, songs or genres.

As depicted in Figure 4A, the first geovisua-

lization depends upon a user selecting an artist,

song and date from within the ‘Track By Artist’

tab in the main application window. Once this has

occurred, all of the chart events that correspond to

this triplet of information are plotted on the Ya-

hoo! Map. A circular marker is placed at the loca-

tion of the radio station that created each of the

resulting chart events. This initial mapping is in-

tended to help users determine which areas of

North America their selection is popular in.

The second mapping visualization, as seen in

Figure 4B, is based upon the most and least popu-

lar songs on each station’s chart. By navigating to

the ‘Track By Success’ tab and selecting a date,

users can elect to view the top (or bottom) song

for each station on this date. The resulting map-

ping has the circular markers change into tiles that

display the top (or bottom) artists’ album cover.

The purpose of this second visualization is to as-

sist a user in determining the short-term trends

that occur across different regions. Using this in-

formation, one can look at the past few weeks of

charts to determine if the selected artist has been

building a strong national fan base (and steadily

climbing up the charts) or if they have a local

“cult” following.

The last visualization is designed to help en-

hance the previous two visualizations by illustrat-

ing the long-term trends of different genres

(Figure 4C). By visualizing the top or bottom ge-

nres for each station, a user can determine which

genres are continually producing top songs across

all regions and which genres continue to be

ranked at the bottom. After selecting a date from

within the ‘Track By Success’ tab, the corres-

ponding chart events are displayed on the Yahoo!

Map. The markers that are used for this visualiza-

tion are circles with fixed radii, whose fill color

depends on the genre of the top (or bottom) song

that was played on the respective station. Al-

though it is generally thought that most radio sta-

tions only play one genre, in looking at the data

we obtained, this was not the case; many radio

stations had numerous genres within their rotation.

To determine how an artists’ song popularity

has been changing over time, a user can select the

“View all weeks” option in accordance with any

of the above visualizations. This option dynami-

cally creates and plays a temporal geovisualiza-

tion animation of the filtered chart events as they

occurred throughout the six weeks of data collec-

tion. The resulting dynamic animation can be used

to view which geographic areas an artist is popu-

lar in or where specific genres are emerging. By

observing the changes that occur in marker color

and radii, the different album covers that appear

and the emergence or disappearance of markers, a

user can spot changes, in a much quicker and

simpler manner than by flipping between pages in

a report or navigating amongst a variety of music

sites.

A) B) C)

Figure 4 – A) ‘Track By Artist’ view, B) ‘Track by Success’ chart position view,

C) ‘Track by Success’ genre view.

7

3.5.3 Charting

To assist users of the system, multiple charting

visualizations have been included in Invenio (a

bubble chart, line chart and plot chart). Each of

these visualizations are located within the chart

window and can help a user to compare the tem-

poral increase and decrease in popularity of dif-

ferent songs. A user can select up to five different

songs and compare the movement of the songs

against each other.

The bubble chart, seen in Figure 5A, visua-

lizes a song’s popularity over time as it relates to

different radio stations. By changing the size of a

bubble’s radius to correlate with a song’s chart

position, a user can gain a quick overview and

general idea about how a song has been embraced

by a radio station’s audience over time. If there is

a small variance in bubble radii, then an artist has

a steady audience; if there is a steady increase or

decrease in the bubble radii over time, then an

artist is either gaining or losing popularity. By

using a simple visualization metric such as bubble

size, the user is provided with a quick overview

which can be further refined using the line and

plot charts.

In order to provide a user with more detailed

analytics pertaining to the songs a user has se-

lected, a line chart has been created (Figure 5B) to

visualize a song’s popularity across stations using

a ‘chart score’ metric (the average position of a

song across all music charts). By computing this

metric for each song across each week, it becomes

very easy to compare different songs against each

other when the total number of chart events per

week may vary across stations.

Invenio’s last chart view, as found in Figure

5C, is a plot chart, and its purpose is to provide an

enhanced level of visual analytical data. A plot

chart graphs a number of data series’ using data

points instead of bars or lines. This plot chart is

used to view the variance that occurs between a

song’s chart placements. A user can quickly

browse the graph’s data points and determine if a

song’s chart positions are clustered together or if

they have a large variance. A song that has a

small variance indicates that the song had a steady

rise or fall to/from popularity, but a larger va-

riance indicates that an artist’s popularity is being

influenced by an external force, such as a recent

concert, album or promotional campaign. As well,

a user can use the graph to easily determine how

many times a song was placed at position ‘X’ by

looking at the shade of the point’s marker: the

darker a marker, the more events occurred at that

position. Using this last chart view, a user can

quickly and easily determine how fragmented a

song’s popularity is and track this fragmentation

over a period of time.

4 Workflows

Because Invenio has the potential to be used by a

wide variety of users, it implements several alter-

native workflows tailored to the information

needs of these various potential audiences.
1
 Re-

gardless of which workflow is invoked, all the

information that Invenio utilizes is dynamically

retrieved at run time. The core retrieval APIs that

Invenio makes to its web service are issued in the

form of HTTP GET requests. They are illustrated

in Figures 6 and 7 and have already been dis-

cussed in Section 3.2.

One should note that the three workflow cat-

egories we have identified for Invenio exemplify

the general categories that applications examining

1 The interested reader can see a viewlet demonstrating the

workflows at http://www.cs.ualberta.ca/~stroulia/660/

Winter2008/animation.swf

A)

B)

C)

Figure 5 – A) Invenio Bubble Chart, B) Invenio Line Chart, C) Invenio Plot Chart.

8

different products or services typically support,

namely (a) consumer-research workflows, (b)

product-history workflows, and (c) producer-

executive workflows.

4.1 Consumer Research workflow

Because products and services such as videos,

music, consulting and business research have be-

come borderless commodities, utilizing a geo-

graphic representation of a product’s popularity

may provide a consumer with an alternative way

of discovering new or forthcoming products.

Within Invenio, the most beneficial user interac-

tions that support this need come via the Yahoo!

Map (which is located within the main application

window). In the main application window under

the ‘Track By Artist’ tab, five different GET re-

quests can be invoked by a user’s actions.

The first request is issued while the web ser-

vice is initializing. To initially populate the pro-

ducer’s combo box with values, Invenio issues a

GetProducers request to the web service. The

result of this request populates the combo box

with all the artists present in the producer data-

base table. If a user so chooses, they can filter this

large list of artists by selecting the ‘Filter By Ge-

nres’ check box. Then, Invenio issues a GetGe-

nres request to the web service to retrieve a list of

all the genres present within the product table. If a

user selects one of the resulting genres, another

GetProducers request is issued and a filtered list

of artists whose songs fall within the selected ge-

nre populates the artist combo box. Selecting an

artist from the artist combo box invokes a Get-

Products request to the web service. The resulting

XML populates the song combo box with a list of

songs that were performed by the artist selected in

the artist combo box. After a user has selected a

date from the date chooser and clicked on the

‘Display’ button, Invenio issues a GetChartEvents

request to the web service. Upon completion, this

request returns a filtered list of chart events and

displays them on the Yahoo! Map.

The selection of the second tab of the main

application (‘Track By Success’) causes a differ-

ent tab of options to appear. Within this tab, a user

can select a date (using a date chooser), click on

one of the chart event filtering options and then

select the ‘Display’ button. Just as in the first tab,

the selection of this button causes Invenio to re-

quest a filtered set of chart events, and plot them

on the Yahoo! Map.

It should be noted that an alternative to the

date chooser method of selecting a date in both

tabs is to select the “View All Weeks” checkbox.

This action will return filtered results for all of the

weeks of data collection and display a temporal

animation of the chart events on the Yahoo! Map.

As interactivity was a very important feature of

Invenio, all of the resulting Yahoo! Maps respond

to user interactions in many ways. First off,

whenever a user hovers over a marker (and the

“View Additional Information” checkbox has

been selected), Invenio issues an ItemSearch re-

quest to Amazon to retrieve the album cover of

the song, the release date, price, number of List-

mania! lists on which the album appears, and an

Amazon editor review. The resulting information

is displayed in a pop-up window within the Yahoo!

Map. Another type of interaction involves the

selection of a Yahoo! Map marker, which causes

the display shelf window to open and a GetVen-

dors call to be issued.

4.2 Product History workflow

When looking at the history of a product, one is

usually concerned with temporal increases and

Figure 6 - Invenio MySQL Requests.

Figure 7 - Invenio Amazon and Yahoo! Requests.

9

decreases in its popularity, utility, gross margin,

replacement rate, etc. Within Invenio, one can

look at a product or song’s temporal popularity

using the display shelf window. This window can

be opened in two ways, each one involving differ-

ent types of user interactions (and subsequent

GET requests).

If a user has elected to use the ‘Display Shelf

Window’ button to open the display shelves, then

the creation of this window invokes a GetVendors

request. The result of this request populates the

station’s combo box with a list of radio stations

that they can choose from. Once a user has se-

lected a station from this combo box, a GetChar-

tEvents request is sent to the web service. The

result of this request is a collection of chart events

that occurred on the selected radio station. After

these events are obtained, a GetAlbumImage call

is issued for each artist in the chart events set. The

result of these requests populates the display

shelves with the appropriate artist album covers.

If a user has clicked on a Yahoo! Map marker

all of the above requests are made, except for the

GetVendors request (as this information is already

available via the marker that the user has clicked

on).

The last type of API request that is invoked is

the ItemSearch request, issued each time a user

clicks on a display shelf tile. The results of this

request populate a pop-up window with informa-

tion pertaining to the selected artist.

4.3 Producer Research workflow

Producers are extremely concerned with monitor-

ing the successes and failures of their competitors.

Although a user can compare different products,

or songs, quite easily by interacting with the Ya-

hoo! Map and display shelf window, the most

informative data for this audience can be found

via their interactions with Invenio’s charting

components.

Within the charting window, there are only a

few interactions that take place. Once a user

clicks on an ‘Artist X’ check box (where X is li-

mited to 5), Invenio issues a GetProducers re-

quest to the web service and the resulting artists

are added to the relevant artist combo box. Just as

within the main application window, the selection

of an artist from an artist combo box results in a

GetProducts request. After the request returns a

list of songs, they populate their respective combo

boxes and are available for a user to make a selec-

tion. Once a user has selected their desired num-

ber of artists and corresponding songs and clicks

on the ‘Display’ button, Invenio makes a Get-

ChartEvents request to the web service. The re-

sulting chart events are then converted into chart

series’ and are displayed on the three different

chart visualizations present in Invenio. The rest of

the interactions a user can make within this win-

dow (filtering which series are displayed, hover-

ing over nodes, zooming in/out) do not cause

Invenio to issue any other requests to its server,

unless one is switching their artist or song combo

box selection.

We should note here that each of the HTTP

GET requests made to the data resource returns a

special-purpose format of XML, called e4x (EC-

MAScript for XML). Using e4x, an XML docu-

ment is not treated as a DOM object and as such

does not require lengthy accessor functions or

specific XML libraries to parse or create it. In-

stead, XML is treated as a set of primitive objects

that can be easily created and traversed using dot

(.) or attribute (@) operators.

5 Development Practices

In this section, we describe the specific require-

ments that we had established for Invenio, the

technology choices that were available to us while

developing our application, the decisions that we

made regarding its design and development, and

some lessons and recommendations that we be-

lieve may be useful to others who engage in simi-

lar endeavors in the future.

5.1 Requirements

Because Invenio is a rather complex service with

numerous components and visualizations, there

were many requirements that needed to be consi-

dered before the implementation of Invenio could

begin.

Due to the large amount of data present with-

in Invenio (14,000 chart events), one of our re-

quirements was that it needed to be able to

aggregate and accommodate a large quantity of

data and be able to obtain a small subset of this

data dynamically and on-demand. Although Inve-

nio’s data was only collected for a six week pe-

riod, the data storage medium needed to be able to

store data that could potentially be added at a later

date, and also be able to manipulate its structures

10

fairly easily to accommodate new domains or

types of data.

In line with this, we needed to be able to re-

trieve the data from storage in a manner that

would allow for low user-perceived response la-

tencies. If a user had to wait for data to appear,

they could become frustrated and navigate away

from our web service. Our mechanism of compo-

nent intercommunication also needed to be very

rapid and have zero data loss while being trans-

mitted. If the data received from storage was in-

complete or missing, this could result in

malfunctions in the web service, which would

lead to a decrease in user experience and satisfac-

tion.

Another requirement that was inherent within

Invenio was the necessity of a geographic visual

representation of the data. This geographic visua-

lization needed to be in the form of a highly inter-

active and customizable map. Because one of our

goals was to handle runtime user choices and se-

lections in effective, interesting ways, we also

needed the map to respond to dynamic sets of data

that were modified at runtime. It would not be

sufficient to have a static map visualization of

only one artist or song; we needed to allow the

users to change their selections quickly so as to

compare the results efficiently. As well, we

needed to be able to allow users to overview, filter,

and zoom their selections using very easy to learn

techniques contained within a highly intuitive

interface.

Because there were many different target au-

diences with varying levels of skill sets that could

be using Invenio, there also needed to be many,

different, highly interactive and visually appealing

visualizations. We strongly believe – although we

have no formal usability proof in support of this

claim – that static, non-animated representations

of data would not be sufficient for this web ser-

vice to be effective; instead, we needed to find

novel, unique ways to represent the data in ways

that appealed to a large number of potential au-

diences. We hypothesized that creating represen-

tational mediums such as charts and display

shelves would greatly increase a user’s experience

and also allow us to utilize external APIs and ser-

vices to aggregate even more data within Invenio.

Because Invenio is a prototype application,

one of our other requirements was that it should

be relatively easy to add and remove components

to and from the service. Due to this constraint, we

needed to find a way in which the communication

between the different components in our program

(i.e. data, web service, geographic map, charts,

display shelves, Amazon data and user interaction)

could easily be extended or modified as needed,

using the simplest protocols possible.

As well, we needed to find a framework or

programming language that had many highly vis-

ual components (such as buttons, sliders, combo

boxes), that could be used with a variety of differ-

ent web browsers and operating systems, and

would support the creation of a visually rich, in-

tuitive application interface.

5.2 RIA Framework Choices

Given the project requirements discussed in Sec-

tion 5.1, one of our biggest challenges was deter-

mining what type of RIA framework to use.

Currently, there are three rather popular frame-

works: Adobe Flex (described in Section 3.5),

Open Laszlo [14] and SmartClient [15].

5.2.1 OpenLaszlo

OpenLaszlo is an open source web service

framework that was created by Laszlo systems in

2001. One of its major selling features is its "write

once, run everywhere" mantra. An application

developed using OpenLaszlo is compatible with

all web browsers and operating systems, allowing

one to author their program on one system, and

have a ‘guarantee’ that it will be compatible on all

others. OpenLaszlo is actually very comparable to

Adobe Flex. As depicted in Figure 8, OpenLaszlo

is composed of two main components, the LZX

programming language (akin to MXML and

XAML) and the OpenLaszlo web server. The

LZX language utilizes XML tags to create Open-

Laszlo components (just as MXML does within

Flex), which support rapid prototyping, long-term

code maintenance, and collaborative software

development. The LZX library contains a plethora

of components, debugging properties, animation

capabilities, data binding mechanisms, and web

service support (XML, SOAP, XML-RPC and

JavaRPC).

Typically, an OpenLaszlo program is au-

thored using either an Eclipse IDE plug-in or a

text editor (just as Flex, with the Flex Builder or

SDK support). After the program has been written,

it is passed to the OpenLaszlo web server. This

web server is a Java or J2EE servlet that compiles

LZX applications into a DHTML executable bi-

nary. This executable binary is then viewed in a

11

web browser using DHTML. The one downside to

this approach is that one needs to install a Java or

J2EE servlet with the appropriate OpenLaszlo

servlet extension in order for this DHTML compi-

lation to work. If one already has a web server

installed then they can choose to compile their

OpenLaszlo program into a Flash .swf file and

view it in a web browser using Flash player (just

as Flex does). Although this second method of

compilation can be useful, it does have one major

flaw: one cannot consume SOAP web services or

use XML remote procedure calls. While both me-

thods of compilation can be useful, it seems that

their pitfalls could cause a potential user to switch

to another framework such as Flex or SmartClient.

5.2.2 SmartClient

Although not as widely used as Flex or OpenLas-

zlo, SmartClient is a similar framework, which is

not completely open source. Distributed by Iso-

morphic in 2000, it uses DHTML and AJAX to

create smart, client-side SOA clients for web ap-

plications. As illustrated in Figure 9, the

SmartClient architecture was designed with a very

modular style in mind; its SDK comes with a va-

riety of services, data components, implementa-

tion blocks and GUI components. For a fee, one

can download a variety of visual creation tools

(builder, runtime console, component editor, ad-

min console) and the SmartClient Server.

Of most interest to developers is

SmartClient’s focus on MVC architecture, making

authoring applications across multiple developers

a simple task. Specific constructs were built into

the SmartClient API to support and encourage

individuals to utilize this architecture, no matter

how small or large their web service is.

SmartClient also provides one with a seamless

integration with RSS, REST, SQL, SOAP mes-

sages and XML namespace handling.

As with Flex, one uses XML tags to create,

modify and populate a variety of visual and foun-

dation components, such as grids, trees, buttons,

and scrollbars. Just like Flex and OpenLaszlo,

SmartClient provides support for a variety of web

service protocols such as WSDL and REST (in

either XML or JSON) One interesting difference

between the two previously discussed frameworks

is the fact that the deployment of SmartClient

applications is not server specific; SmartClient

can run off of a J2SE Container, or Spring, Hiber-

nate, JSF or Struts. While this does make life on

the client side easier (because there is zero-install

for programs such as Flash), it does make things

more complicated for the developer on the server

side, especially if they are new to web service

development.

In looking at these three frameworks, it ap-

pears that they each focus on one of two things:

either providing a method to organize and aggre-

gate data well, or providing a rich interface design

experience. SmartClient is an example of the for-

mer approach with a web services organization,

with its multiple server options and MVC archi-

tecture; it almost appears that interface design is

nothing but an afterthought. Opposite to this is

Flex, which provides seamless integration with

external APIs, components and flashy interfaces

but places less of an emphasis on architecture

organization: components can be created in either

MXML or ActionScript, and there is little empha-

sis on data aggregation or organization. Unlike

SmartClient and Flex, it appears that OpenLaszlo

Figure 8 - OpenLaszlo Architecture [14].

Figure 9 – SmartClient Architecture [15].

12

is focused on creating a happy medium for devel-

opers, weighing organization and interface design

equally by providing multiple deployment me-

thods and a rich interface library.

5.2.3 Rationale for Choosing Flex

In deciding which of these frameworks to use, we

looked at our specific requirements and came to

the realization that we needed a framework that

would support a relatively simple source of data,

but would be able to create a remarkable user ex-

perience through the use of sharp, innovative vi-

sualizations and user interface design. External

data integration and deployment methods were

also major concerns.

Looking at the examples of SmartClient ap-

plications, it appeared that SmartClient’s GUI was

very “clunky” and bloated and the integration of a

geographic map would be a very time consuming

process. As well, the applications did not suggest

that SmartClient was geared towards visualiza-

tions, animation or charting, instead they made

SmartClient appear to be a glorified form builder

– which did not fulfill our objectives with Invenio.

The extension or customization of components

appeared to be more complicated than necessary,

making the communication between components

such as the geographic map and the display

shelves unnecessarily complex and unwarranted.

As charting was an important part of our web ser-

vice, the flexibility and user interaction capabili-

ties that were provided by the application would

not meet our needs and we did not have the extra

development time that would be needed to bring

them to the appropriate level. In our opinion, ze-

ro-install clients are desirable; however, this “pos-

itive” feature of SmartClient is not necessarily

decisive. According to the Milward Brown survey

conducted in March 2008, 98.8% of Internet-

enabled PCs use Flash [16]. Given this statistic,

the benefit of SmartClient’s zero-installation

client does not outweigh its potential problems on

the server end.

Although OpenLaszlo does appear to try and

integrate both component organization and user

interfaces equally, a further inspection into their

components did not prove to be promising. The

interfaces that we saw as examples were lacklus-

ter. The components were poorly designed, the

graphics were unimpressive and even with the

addition of skinning or themes, the interfaces did

not have much fluidity. Because Amazon and

Yahoo! Map integration appeared next to imposs-

ible and the creation of custom components such

as charts and display shelves did not appear to be

supported, we opted to not use OpenLaszlo. Be-

cause we would need to use the Java / OpenLas-

zlo server to utilize external data sources such as

Amazon and our Invenio Web Service (XML

HTTP calls are not supported in the compiled

SWF deployment option), we would have to use

JDBC to access our database, and we felt that this

was unnecessary and would greatly complicate

our work. Instead of setting up a separate J2EE

web server and using JDBC, we could use Flex

and create a PHP-based web service that would

use HTTP GET requests to obtain our data, all of

which could be set up in a fraction of the time that

OpenLaszlo’s method would require. Given the

unnecessary work that would be needed and the

unintuitive nature of the OpenLaszlo components,

the usage of Flex seemed to be the right choice for

our web service.

Another factor that played a part in our deci-

sion process that was only tangentially related to

our project requirements (to the extent that we had

to meet development deadlines) was the amount

of support and help available to the developer. As

this was a first time prototype design, it was vital

that support be easily available to consult and that

the integration of all the external API’s and cus-

tom components be as seamless and fluid as poss-

ible. Once again, Flex proved to be the solution

for us. Flex has a vast quantity of user submitted

examples, cookbooks and tutorials that make it a

very easy for a new developer to get started with

their framework in a very short period of time.

5.3 Recommendations Checklist

The decision about which frameworks and exter-

nal sources to use, how to combine them and how

to design them depends upon a variety of factors:

(a) Intent behind the RIA service

Web services that are designed to be information

providers need to utilize frameworks that support

information visualization, either graphical or tex-

tually, in a clear manner. Although data storage is

important, one should place more value on

frameworks that create interfaces with low cogni-

tive load and protocols that allow large amounts

of data to be easily aggregated. Information-

gathering services (i.e., use forms and search en-

13

gines) should look towards frameworks with pro-

tocols that encourage low latency and quick re-

sponse rates. Such services are typically designed

with future extensibility in mind and as such, pro-

tocols and frameworks should be designed so that

the aggregation and search ability of new, up and

coming information sources can easily be incor-

porated into such services.

(b) Types of data visualization needed

Static visualizations of data are currently very

easy to create and render, but the components

utilized to create these displays should be ex-

tended to promote user interaction and knowledge

discovery. A static 2D line chart of a product’s

success is no longer sufficient; instead, users want

to view visualizations that they can interact with,

“drill down” into, and view additional external

information about. Services that heavily depend

upon dynamic visualizations need frameworks

that can support substantial quantities of data and

rapid user interactions and manipulations. Such

visualizations need to be supported by mechan-

isms that allow users to obtain overviews of the

data being displayed and then facilitate deeper

exploration and discovery. Currently, the RIA

frameworks that are used in practice do not sup-

port these ideas to the desired degree. The current

frameworks are slow to react to user interactions,

have long pre-loaders and require data to be bro-

ken down into very small subsets in order for rap-

id transmission to occur.

(c) Deployment contexts required and desired

The target audience of one’s web service plays a

major role in the deployment contexts that one

requires for their service. Users in the 20-30 year

old demographic generally use different operating

systems and demand rich visually appealing inter-

faces. Providing this group with a visually wa-

tered down service so as to support zero-

installation principles would create a mismatch

between user expectations and delivered product

features. In other cases, such as global web ser-

vices, one’s target audience spans a wide range of

demographics, making the types of deployment

one uses hard to determine. In this case, using a

framework that supports multiple deployment

mediums may prove to be effective. Web services

designed for educational purposes are typically

used by school-aged children familiar with only

one operating system (that usually does not have

administrator install privileges). Creating a web

service that provides a zero-installation client

would be beneficial for this group; a multi dep-

loyment framework would be wasteful.

(d) Extent of component intercommunication

It is fairly intuitive that the more components (ei-

ther GUI or external API created) one has, and the

more user interaction present in an application,

the larger and more complicated its inter-

component communication demands will be. Web

services that are highly visual and graphical, as

opposed to those that are information gatherers,

benefit most from unstructured frameworks.

Choosing a framework which has little to no im-

posed structure can be a benefit for programs with

externally created components, such as those us-

ing JavaScript to relay user interactions to a web

service, or those requiring validation from an ex-

ternal server or source. Under these conditions it

can be very easy to create and extend custom user

and component interactions. On the other hand,

structured frameworks which have built-in archi-

tectures are a perfect choice for those services

which need to be duplicated multiple times, need

to follow specific protocols, and deal with sensi-

tive information. Services such as online stores,

banks and email providers are excellent examples.

Without a standard mechanism of user interaction,

it would be very difficult to add new features to a

service or repair damaged or vulnerable compo-

nents of a service process.

(e) Amount of unnecessary customization

needed to compensate for API or framework

insufficiencies

Of the lessons we learned, this was one of the

most valuable. Frameworks that do not support

component or protocol extensibility are practical-

ly useless. Given the popularity of mashups and

data source integration, frameworks should be

designed and chosen so as to facilitate the integra-

tion of other programs or information; if integra-

tion appears too complicated, a developer would

and should choose another framework or protocol.

The more “workarounds” and “hacks” one needs

to create to compensate for missing features and

functionalities, the less valuable and helpful a

framework is. By creating frameworks that sup-

port and encourage component extensibility, de-

14

velopers encourage individuals to create novel

mediums of communication, interaction and visu-

alization, which could be incorporated into further

releases, pushing the success and popularity of

RIA frameworks forward. Not only will less code

be needed in the end, but developers will not have

to spend hours tinkering with SDKs or APIs try-

ing to perform simple component customizations.

The less time spent tinkering, the more time is

available to tackle more challenging problems

such as data retrieval, manipulation, and visuali-

zation.

(f) Importance of data source organization, data

visualization, and user interaction

This factor became the most apparent when re-

searching the differences between each frame-

work (Section 5.2). On the surface most of the

frameworks in use today appear to be quite differ-

ent (albeit with differences in deployment and

feature support), but in reality they all have one of

two main focuses which are mediated by user

interactions: data organizer, or data/interface vi-

sualization. There are a variety of examples pro-

vided for all frameworks that describe how to

organize data or how to visualize it using compo-

nents or interfaces, but there is very little informa-

tion pertaining to the appropriate ways to fuse and

utilize these two ideas together, and even fewer

explaining where user interaction should fit in.

How does one design their data sources to pro-

mote visualization? How does one create complex,

interactive visualizations from simple or aggre-

gated data sources? Where does user interaction

fit in? All of these questions need to be consi-

dered and answered.

(g) An attempt at “best practices”

To summarize and consolidate the lessons we

learned through our experience, we formulated

the following recommendations:

1. If possible, design visualizations first. It is

easier to break down a complex display into a

variety of meaningful parts and populate

them, than it is to tease meaning out of a

complex data source. If, for some reason, the

visualizations must come last, one should

look first for broad patterns or themes, and

then drill down into the complexities.

2. The simplest possible data source or database

representation should be designed. All unne-

cessary data from the basic resources should

be filtered away. Complex sections should be

broken down into easily pluggable compo-

nents. As much information as possible –

high in quality, low in quantity, should be

stored.

3. The design should ensure that users are able

to overview, filter and zoom through visuali-

zations or interfaces where appropriate. In-

formation should be revealed on-demand to

the user; the more user interaction, the more

novel, detailed information should become

available.

4. The design should aim to decrease the latency

between a user’s actions and the service’s re-

sponse. No one is willing to be kept waiting

for feedback about their decisions or choices.

5. Viewing the same information should be

possible using multiple mediums or methods.

Charts, graphs, graphics, geovisualizations

(where appropriate), media and interactive

components can reveal different information

to different users.

6. In RIAs, user interaction with the data should

not be an afterthought. The web service being

built is for the user; appropriate accommoda-

tions should be made to design interfaces and

visualizations that will be intuitive for your

target audience’s skill set.

Given the fairly small amount of research that

has gone into best practices for large-scale RIA

design, our experiences with the creation of Inve-

nio should be a valuable starting point for further

exploration into this area.

6 Conclusion

As most new web technologies fall under the Web

2.0 umbrella, one would expect to find an abun-

dance of documentation or user experience litera-

ture detailing how a developer can easily mash a

variety of these technologies together. However,

through our experiences in authoring a data-

intensive RIA, entitled Invenio, we discovered

that a very small amount of literature pertaining to

this topic actually exists. To this end, we have

developed and reported a list of “best practices”,

or guidelines to use as a launching pad for future

research in this area.

15

Invenio was designed and instrumented uti-

lizing a complex combination of Web 2.0 tech-

nologies such as Adobe Flex, the Amazon

Associates Service and Yahoo! Maps. This paper

has reported on the functionality, system design

and technology choice rationales behind Invenio,

with the hope that it’s descriptiveness can assist

others who are developing large-scale Web 2.0

applications.

About the Authors

Michelle Annett received her Bachelor’s degree

from the University of Alberta and is currently

studying there as a master’s student. She is inter-

ested in developing virtual reality applications and

systems to study human spatial navigation and

wayfinding. She can be reached at mkan-

nett@cs.ualberta.ca.

Eleni Stroulia, http://www.cs.ualberta.ca/~stroulia

holds M.Sc. and Ph.D. degrees from the Georgia

Institute of Technology and is an Associate Pro-

fessor with the Department of Computing Science

at the University of Alberta. Her research ad-

dresses industrially relevant software-engineering

problems with automated methods, based on ar-

tificial-intelligence techniques. Her team has pro-

duced automated methods for migrating legacy

interfaces to web-based front ends, and for ana-

lyzing and supporting the design evolution of ob-

ject-oriented software. More recently, she has

been working on the development, composition,

run-time monitoring and adaptation of service-

oriented applications, and on examining the role

of Web 2.0 tools in enabling the practices of col-

laborating communities.

References

[1] Celebrity gossip juicy celebrity rumors Holly-

wood gossip blog from Perez Hilton.

http://www.perezhilton.com. June 2006.

[2] U.S. Album Sales Down 9.5%, Digital Sales Up

45% in 2007. http://www.dmwmedia.com/news/

2008/01/03/u.s.-album-sales-down-9.5%25%2C-

digital-sales-45%25-2007. March 2008.

[3] Album Sales Slump as Downloads rise.

http://www.usatoday.com/life/music/news/2006-

01-04-music-sales-main_x.htm. March 2008.

[4] Nielsen SoundScan Releases Year-End Sales

Data.

http://www.billboard.biz/bbbiz/content_display/in

du-

stry/e3iXZLO0IdrWuAOeIRwz3vtYA%3D%3D.

March 2008.

[5] Wood, J., Dykes, J., Slingsby, A., Clarke, K.,

Interactive Visual Exploration of a Large Spatio-

temporal Dataset: Reflections on a Geovisualiza-

tion Mashup, IEEE Transactions on Visualization

and Computer Graphics. pp. 1176-1183. Novem-

ber/December, 2007.

[6] Kwan, MP., Lee, J., Geovisualization of Human

Activity Patterns Using 3D GIS: A Time-

Geographic Approach. Spatially Integrated Social

Science, Michael F. Goodchild and Donald G. Ja-

nelle (eds). New York: Oxford University Press.

48-66. 2004.

[7] TubeMogul.com – Online Video Distribution and

Analytics. http://www.tubemogul.com/. March

2008.

[8] QLikView Musiq Tracker.

http://demo.qliktech.com/qlikview/AJAX/MusiqT

racker/. March 2008.

[9] Brownstein, J., Freifeld, C., Reis B., Mandl K.,

HealthMap: Internet-based emerging infectious

disease intelligence. Infectious Disease Surveil-

lance and Detection: Assessing the Challenges -

Finding Solutions. Washington, DC. pp. 183-204.

2007.

[10] Neilson BDS Stations.

http://www.bdsonline.com/stations/index.html.

January 2008.

[11] Shneiderman, B. The Eyes Have It: A Task By

Data Type Taxonomy for Information Visualiza-

tions, Proc. IEEE Symposium on Visual Lan-

guages '96, IEEE, Los Alamitos, CA. pp. 336-343.

September 1996.

[12] Amazon Web Services @ Amazon.com.

http://www.amazon.com/E-Commerce-Service-

AWS-home-page/b?ie=UTF8&node=12738641.

January 2008.

[13] Adobe – Flex Development Center.

http://www.adobe.com/devnet/flex/. January 2008.

[14] Deployment Architecture | OpenLaszlo.

http://www.openlaszlo.org/deparchitecture. April

2008.

[15] SmartClient Overview.

http://www.smartclient.com/technology/basics.jsp.

April 2008.

[16] Adobe – Flash Player Statistics.

http://www.adobe.com/products/player_census/fl

ashplayer. April 2008.

