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The user experience on tablets that support both touch and styli is less than ideal, due in large part to the
problem of unintended touch or palm rejection. Devices are often unable to distinguish between intended
touch (i.e., interaction on the screen intended for action) and unintended touch (i.e., incidental interaction
from the palm, forearm, or fingers). This often results in stray ink strokes and accidental navigation,
frustrating users. We present a data collection experiment where participants performed inking tasks, and
where natural tablet and stylus behaviors were observed and analyzed from both digitizer and behavioral
perspectives. An analysis and comparison of novel and existing unintended touch algorithms revealed that
the use of stylus information can greatly reduce unintended touch. Our analysis also revealed many natural
stylus behaviors that influence unintended touch, underscoring the importance of application and ecosystem
demands, and providing many avenues for future research and technological advancement.
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1. INTRODUCTION

The world of touch interaction today is largely focused on direct manipulation, mapping
users’ taps, swipes, and gestures to selection, panning and zooming. Such mappings al-
low natural interactions, with all touch events being intended for interaction. A similar
situation is found with stylus-only devices, where all input is mapped to inking, assum-
ing that every stroke is intentional. This enables users to easily and fluidly complete
tasks that require enhanced precision, such as, for example, diagramming, sketching,
and writing. The combination of pen and touch is incredibly powerful, enabling the
dominant hand to perform inking and the nondominant hand to provide support via
manipulation [Guiard 1987; Hinckley et al. 2010a, 2010b]. Such a combination allows
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a seamless transfer of natural and intuitive behaviors from the physical to the digital
world while also supporting the implementation of new tools and interaction tech-
niques [Fitzmaurice et al. 1999; Hinckley et al. 2010a, 2010b, 2013; Vogel et al. 2009;
Wagner et al. 2012; Yoon et al. 2013; Zhang et al. 2012].

Such interaction paradigms require that the system not only distinguishes between
pen and touch input but also distinguish between touch events that are intentional and
those that are an unintended by-product of stylus-based interaction. While annotating
a document or writing notes, it is common to rest the palm, wrist, or forearm on the
screen for support, to reduce fatigue, or to anchor the page [Hancock and Booth 2004;
Siio and Tsujita 2006]. This natural behavior unintentionally generates a variety of
touch input events. Depending on the digitizer, operating system, and application, such
events may invoke a gesture, manipulate content, or render markings on the screen
[Annett et al. 2014b]. When using these systems, there are many instances where the
user would like the touch input to be recognized (e.g., while swiping to the next page
or zooming an image). Such scenarios exemplify one of the major problems plaguing
pen and touch interaction today: How does a system determine which touch events are
intended (i.e., intentional interactions with the fingers) and those that are unintended
(i.e., those that are a by-product of the skin resting on, or grazing the display)?

The identification and rejection of unintended touch events is important for all pen
and touch-enabled devices, and especially so for tablets. During simultaneous bimanual
manipulation, that is, when actively using both pen and touch (e.g., Hinckley et al.
[2010a, 2010b]), the touch events corresponding to the gestures need to be accepted,
whereas the touch events generated by resting the stylus hand on the screen should
be ignored. With interleaved pen and touch, where only one modality is being “used”
at a time, the system must still distinguish whether a touch is intended for action or
if it is simply the arm contacting the screen prior to the stylus being placed down.
Failure to properly identify the intention of the touch results in spurious input to the
application, severely reducing a user’s efficiency and satisfaction with an application
or device [Annett et al. 2014b].

The need to accurately distinguish between intended and unintended touch input
has been identified extensively in prior work [Annett et al. 2014b; Alcantara et al.
2013; Gerken et al. 2010; Hinckley et al. 2010; Lin et al. 2013; Matulic and Norrie
2012; Vogel and Balakrishnan 2010a; Valderrama Bahamonde et al. 2013; Zelzenik
et al. 2008] but has yet to be explored in depth. Most developers and researchers
today ignore the problem completely by turning touch off or applying existing work
from occlusion-aware interfaces to the problem [Yoon et al. 2013]. There is a lack
of knowledge both in the literature and in practice regarding unintended touch and
appropriate interventions.

Apart from drawing attention to the importance of understanding and solving unin-
tended touch, this work contributes to the understanding of the problem itself, detailing
specific challenges developers and manufacturers are faced with when devising solu-
tions to unintended touch. The current state of the art, in terms of unintended touch
algorithms that exist in industry and in research, is then explored. Motivated by the
diverse approaches that have been tried, an experiment is described that gathered
motion capture data from a stylus and tablet and raw data from a touch and stylus
digitizer while participants were writing, drawing, and annotating documents. The
dataset of unfiltered and unprocessed touch data was recorded directly from the dig-
itizer and permitted an evaluation and comparison of novel and existing solutions to
unintended touch, given both the technological capabilities today and those likely in
the near future. A number of natural user behaviors that influenced unintended touch
requirements and algorithm success are also detailed. The results from this exploration
and the behavioral patterns identified have been synthesized into two broad areas for
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Fig. 1. The data pipeline from the digitizer to an application. Rejection can be performed at three stages
of the pipeline: (a) within the firmware of the device, (b) within the operating system, and (c) within indi-
vidual applications. Depending on the device, the stylus digitizer may be absent (i.e., capacitive devices) or
integrated with the touch digitizer.

future work that should be of great interest to the pen computing community and
stimulate the stylus ecosystem for many years to come.

2. UNDERSTANDING UNINTENDED TOUCH

Within industry, the problem of unintended touch is often termed palm rejection. By
its very description and name, palm rejection suggests the need to reject only the palm.
As the exploration here illustrates, users are likely to touch the display using fingers,
knuckles, palms, wrists, and forearms while inking. The presence and dispersion of
touch data found across the screen suggests that “palm rejection” must not focus ex-
clusively on identifying and ignoring the palm. Researchers and industry practitioners
should thus use more appropriately descriptive terminology, such as unintended touch,
moving forward. Framing the problem as unintended touch, instead of palm rejection,
inherently implies that all future approaches and conversations consider all the skin
surfaces that can touch the device, not just the palm. This will go a long way in drawing
attention to the importance of the problem and prevent common comments such as “oh
that’s an easy problem—just reject everything larger than the finger.” As demonstrated,
approaches based on these off-the-cuff comments are inadequate.

Determining if a touch event is intended or unintended is a multifaceted problem
influenced by many factors. These factors have been distilled into three main cate-
gories: time and data available for decision making, the types of input that need to be
disambiguated, and the cost of recovering from incorrect rejection.

2.1. Timing and Data Available for Unintended Touch

The rejection of unintended touch can be performed at three stages along the data
pipeline [Hinckley and Wigdor 2012]: in the firmware, in the operating system, or in
the application (Figure 1). Each stage has different time constraints and different data
available to make rejection decisions.

Solutions to unintended touch at the firmware level have full access to raw, unfil-
tered data. The raw data is the least abstracted and most informative available along
the pipeline and its usage calls for primitive rejection solutions involving input shape,
simple spatial heuristics, or raw sensor magnitude values. Rejection performed at this
stage does not allow per-user personalization or the integration of factors such as
task context, as the information being passed through the digitizer’s controllers to the
operating system is already close to or at bus capacity. Developers can, however, en-
sure a consistent user experience across operating systems and devices with the same
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digitizers and firmware provided that rejection is performed at this stage. The caveat,
of course, is that decisions need to be made very quickly so as to prevent introducing
latency into the entire system. Through consultation with industry practitioners, hard-
ware designers, and manufacturers, it was understood that there is often less than 5ms
allotted to collect and process any necessary data and make a rejection decision.

Unintended touch algorithms at the operating system level can provide a consis-
tent user experience across all applications on the same platform but run the risk of
inhibiting or eliminating certain interaction techniques or domain-specific functional-
ity, such as simultaneous or interleaved pen and touch input [Hinckley et al. 2010a,
2010b]. At this level, solutions have access to processed and simplified data from the
digitizer and can harness user-specific information such as handedness, hand posture,
and so on. Time requirements at this stage are similar to those at the firmware stage,
as any delay propagates to all applications. With the Windows 7 operating system,
for example, all touch events are rejected when the pen is detected in the hover state
[Buxton 1990], resulting in consistent but restrictive pen and touch experiences across
all applications. Similar to the firmware approaches, there is very little time allotted
to make decisions, typically less than 5ms.

Solutions to unintended touch at the application level can use personalized informa-
tion about handedness or hand posture along with any domain or application-specific
knowledge. Any touch information available to developers, however, is abstracted: one
does not have access to anything more than the location and radius or bounding box of a
touch input that is provided by the operating system. The use of application-specific re-
jection also introduces inconsistency within the application ecosystem, resulting in con-
fusion when rejection fails. Development costs for all applications increase by forcing
the decision to the application stage, as solutions must be written for each application.
The length of time available to make rejection decisions is limited only by the amount
of latency developers want to inject into their applications. Each application can weigh
the cost of accuracy against the cost of adding increasing latency. As latency perception
appears to be task dependent, and dependent on the demands of the application, more
or less time may be available for rejection [Annett et al. 2014c; Ng et al. 2014].

When evaluating and understanding unintended touch, it is imperative to consider
not only the accuracy of an approach or its data requirements but also the duration
of time that is available to make an “accept” or “reject” decision. Regardless of when
rejection is performed, the data that needs to be collected and processed for rejection, in
addition to the actual rejection decision, should be handled in the most efficient manner
possible. Participants in the user studies conducted by Annett et al. [2014c] and Ng et
al. [2014] noticed—and complained about—the lag found with stylus-enabled devices
today; hence, any additional lag introduced by the rejection process and its algorithms
could degrade the user experience further [Laundry 2011; Ng et al. 2012].

2.2. Input to Be Rejected

One of the most difficult aspects of unintended touch concerns the variety of touch
inputs received from the digitizer. Many consider the problem restricted to the palm,
as evidenced by the frequent terming of the problem as “palm rejection” [Zeleznik et al.
2008]. On capacitive touch-only devices, however, any skin contact with the screen can
initiate a touch event. Whenever the knuckles, wrist, palm, fingers, forearm, and so on
touch the screen, a touch event is generated (Figure 2, and further Figures 14, 20, 24,
and 26). As these devices do not have dedicated stylus digitizers, the stylus is undistin-
guishable from the fingers, indicating that the stylus first needs to be disambiguated
from touch before each touch event can be labeled as either intended or unintended.
With devices that contain NTrig or Wacom digitizers (e.g., Wacom Cintiq, Samsung
Business Slates, and Surface Pro), distinguishing between pen and touch is not an
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Fig. 2. Example data provided by pen and touch digitizers. The stylus location is represented in dark
blue and the touch data is represented in orange, with the darker shades representing the higher levels of
activation. All touch data in these images is unintended and should not be accepted.

issue. However, the disambiguation between unintended and intended touch still re-
mains. As the skin can touch the screen at any time and in any location, determining
the intentionality of touch is still very difficult, even with an active stylus.

Although it may seem as if unintended touch is a “problem” that needs to be solved,
it is also important to consider the identification of the palm, fingers, knuckles, and
forearm as an opportunity for novel interaction, gesturing, and so on. In earlier
work by Cao et al. [2008], Marquardt et al. [2011], Widgor et al. [2011], Wu and
Balakrishnan [2003], and Yan et al. [2013], the classification of a touch input as the
palm, a fist, or the side of the hand, was harnessed to create novel gestures for 2D and
3D content manipulation. Brandl et al. [2009], used palm identification to correctly
orient occlusion-aware user interaction menus and elements toward the user. In other
work, such information was instrumental in recovering the identity of users and their
touch points, while they interacted around a multitouch tabletop [Annett et al. 2011;
Murugappa et al. 2012; Ramakers et al. 2012]. One could also imagine many other
scenarios that could capitalize on the identification of various hand parts (e.g., multi-
pen input, technology-assisted rehabilitation, content occlusion). Given the multitude
of possibilities outside unintended touch, we thus encourage the research community
to continue exhausting and exploring the usefulness of hand-part identification.

2.3. Cost of Recovery from Incorrect Rejection

It is imperative to consider the cost of imperfect rejection. There is a delicate balance
between being overly cautious (i.e., falsely rejecting too many intended touch events)
and overly optimistic (i.e., falsely accepting too many unintended touch events). If
the user can easily recover from the errors introduced by poor rejection (e.g., when
touch causes a document to scroll prematurely, when there is an easily accessible undo
button, or when the user can flip the stylus over and use the eraser), then it may be
beneficial to be optimistic about touch events. In contrast, if the cost of recovering from
errors is high (e.g., when the user has to switch modes to erase a stroke precisely or
when undoing a series of manipulations), then a cautious approach may be best. It
is thus essential for developers and designers to consider the cost of recovering from
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errors when deciding about the functionality associated with pen and touch and when
making decisions about unintended touch.

3. CURRENT STATE OF THE ART

Current approaches to unintended touch are commonly spurred by the desire of appli-
cation developers to implement solutions that mesh with their end-user population and
interaction schemas. In instances where solutions have yet to be implemented, there
are several user-specific behaviors that have been used to fill the void. The following
review of current solutions to unintended touch is not meant to be exhaustive, given
that numerous applications are continually updated with novel or improved solutions
every week. Instead, an overview of the range of possibilities that have been used is
provided.

3.1. User Adaptations

When touch rejection algorithms are unavailable in applications, users tend to make
behavioral adaptations. By holding the hand, wrist, or forearm aloft instead of rest-
ing them on the screen, users can reduce the amount of incidental contact with the
screen [Annett et al. 2014b; Gerken et al. 2010; Vogel and Balakrishnan 2010a]. Since
the lower arm is not stabilized, users experience increased fatigue, decreased point-
ing accuracy [Matulic and Norrie 2012], decreased legibility of notes, diagrams, or
sketches, and increased frustration [Annett 2014a; Annett et al. 2014b]. Some users
have resorted to wearing a nonconductive glove on their dominant hand to prevent un-
intended touch [SmudgeGuard, n.d.]. The use of such gloves negates the need to alter
the hand or wrist posture but changes the friction profile of the palm against the screen
and adds overhead, as the user has to put on and take off the glove between uses.

3.2. Firmware Approaches

Recent advances in signal processing have enabled manufacturers to better disam-
biguate between pen and touch. By increasing signal to noise ratios, Atmel [2014],
Synaptics [Coldewey 2011; Sage 2011], Samsung [SmartKeitai 2013], and many others
have made it easier to differentiate between narrow activation signals generated by
thin, pointed objects such as styli, and larger, bulbous objects such as fingers, palms,
wrists, or forearms. These prototypes have eliminated disambiguation on capacitive
touchscreens but have yet to solve unintended touch, as the intention of touch-based
events is unknown.

It is difficult to determine if any firmware-specific approaches have been imple-
mented, as the average developer only has access to abstracted data available from the
operating system. It has been reported, however, that the Microsoft Surface Pro has
an unintended touch algorithm in the touch and stylus controller firmware (i.e., Palm
Block Technology), but few details are available regarding the nature of the implemen-
tation [Microsoft 2013]. Regardless of the algorithms employed by the Surface Pro, the
resulting data is propagated to the operating system and combined with the additional
unintended touch approaches found in the Windows operating system, as well as any
approaches that specific applications may use.

3.3. Operating System Approaches

To date, there is one approach to unintended touch that has been implemented at
the operating system stage. On Windows 7 and 8 devices, whenever the stylus is
in the hover state [Buxton 1990], all touch events are considered unintended and
rejected. This prevents simultaneous interaction from occurring whenever the stylus is
within range. Such an approach requires a digitizer that detects hover (or a Bluetooth-
enabled stylus reporting hover) but is challenged by the nonlinearity of the digitizer
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and variety of hover heights found on devices. In Windows 8.1, for example, a hover
height of 20mm is required for logo certification [Microsoft 2014], but even at this
height, many incidental contacts are still processed. The present evaluation takes these
limitations into account and determines the hover height necessary for this approach
to be successful from the behavioral and digitizer perspectives.

3.4. Application-Specific Approaches

Most unintended touches are generated by areas of the skin that are substantially
larger than the fingers (e.g., the forearm or the palm). Applications such as the Bamboo
Paper on the iPad capitalize on the different-sized areas that the skin activates on the
digitizer and ignores areas above a certain threshold, similar to what Murugappana
et al. [2012] proposed for multitouch tabletops. Although simple, such an approach
requires that input processing must be delayed because all contacts initially appear
very small on the digitizer, making it virtually impossible to distinguish the palm from
the finger on initial contact. If some latency is acceptable, this approach can work
well, but it fails if a finger-sized contact (e.g., the knuckle or fingertip) unintentionally
touches the screen. The present analysis focuses specifically on the usefulness of contact
size for rejection, identifying the appropriate threshold for rejection and understanding
the type of touch inputs and use cases that could cause such an approach to fail.

When access to raw touch data is not available, developers sometimes employ sim-
ple models based on where the palm is hypothesized to rest while taking notes (e.g.,
the bottom of the screen). These static “rejection regions” (i.e., areas of the screen where
all touch input is ignored) are used to reject unintended touch quickly and with little
processing overhead. In the Moleskin Journal iPad application, for example, a static
horizontal widget persists in the bottom third of the screen, rejecting all touch input.
In Samsung’s S Note application and in OneNote 2013, the rejection region is extended
such that it covers the whole inking canvas but not the menu or toolbars. A dedicated
menu button allows users to toggle touch input on and off, which allows the pen to ink
exclusively. Shu [2013] proposed a variant of this approach, allowing the user to specify
the location of the “safe” input region by tapping near the bezel with the nondominant
hand and manipulating the region’s size using a “zoom in” gesture. Coupling a visual
representation (e.g., a colored region or a menu button) with rejection allows users to
understand where they can rest their palm, decreasing the likelihood of unintended
touch. These approaches, however, prohibit efficient simultaneous and interleaved pen
and touch interaction and cannot accommodate rotation of the hand or tablet while
sketching [Fitzmaurice et al. 1999]. As there are many ways to define and place re-
jection regions on the screen, the present work explores a variety of possible regions
using static heuristics similar to those of the Moleskin application as well as novel dy-
namic parameters such as the location of the stylus. This extensive evaluation leads to
a deeper understanding of rejection regions and to solutions that harness generalized
information. The design of feedback to alert users about safe and unsafe regions of the
screen is left for future work.

Handedness information or models of common hand postures or touch input can also
be used to improve rejection algorithms. Vogel et al. [2009] and Vogel and Balakrishnan
[2010a] proposed a general geometric model of hand occlusion as a method for elimi-
nating problems associated with occluded screen content. In their model, the hand and
wrist are generalized as a circle and rectangle whose location and size are based on the
aggregated video data from a sample of users. In TextTearing, Yoon et al. [2013] have
recently used the model to overcome issues with unintended touch. A similar approach
is used by the Penultimate iPad application, which requires users to specify which of
three models of hand posture is most similar to their own. It then uses this information
to reject all touch events that occur in a hand-like shape to the right (or left) of the
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stylus. As Annett et al. [2014b] demonstrated, there are many possible hand postures
and grips while inking and interacting with pen-enabled devices, the Vogel approach
was included in the study as an example of the narrowest possible dynamic rejection
region. Recently, Schwartz et al. [2014] proposed the use of a spatiotemporal approach
that harnesses the radius of each touch event to determine if it should be rejected. With
their approach, the size of each touch input was compared to a dataset and machine
learning techniques were applied for rejection resulting in the acceptance of 98% of all
touch events. While this seems impressive, such results come at the cost of delaying the
ink strokes that were presented to users by upwards of 100ms. As previously identified,
the introduction of any latency into the pipeline will be noticed by users and influence
their behavior, making such an approach infeasible given the strict requirements laid
out in Section 2.

4. DATA COLLECTION

To better understand natural skin contact with pen- and touch-enabled devices, an
experiment was conducted to gather motion capture and raw digitizer data while users
were inking. This data provides information on natural inking behavior and forms a
basis for the analysis of approaches to unintended touch.

4.1. Participants

Eighteen participants (three female) were recruited from within Microsoft Research
to participate in the study (M = 42 years, SD = 10 years, range = 25–61 years).
Participants were naı̈ve to the purpose of the experiment and were not aware that
unintended touch was being evaluating to ensure that natural behavior, and not adap-
tations were being recorded. Four participants were left-handed, as assessed by the
Edinburgh Handiness Inventory [Oldfield 1971]. Participants had varied experience
using a stylus with a tablet, with some using a stylus and tablet every day, others only
a tablet, and a few having never used a stylus or tablet. All participants received a $10
honorarium at the conclusion of the approximately 30-minute experiment.

4.2. Apparatus and Equipment

Participants were seated at a desk surrounded by a six-camera Optitrack motion cap-
ture system and three Microsoft LifeCam Cinema web cameras. The Optitrack system
recorded the movement of the stylus around and above the tablet surface as well as the
movement of the tablet itself. A custom C++ application recorded the location of the
stylus and tablet at 100Hz, with ±1mm of error. The three web cameras were placed in
front, to the right, and to the left of the interaction volume to record overt participant
behavior. The cameras recorded the complete interaction volume with 1080p resolu-
tion at 30 frames per second (Figure 3). The iSpy open-source software was used to
synchronize, timestamp, and record the web cameras for later offline processing and
analysis.

Participants were provided with a Sony Vaio Duo 11 tablet that utilized an NTrig
touch and stylus digitizer. Plastic blocks of one centimeter height were affixed to the
bottom of the tablet to ensure that the markers on the tablet would not be disturbed
if the tablet was moved. During initial pilot testing of the hardware, software, and
tasks, the blocks were not found to influence the size, shape, or location of touch and
stylus input that was generated. Five motion capture markers were added to the tablet,
allowing its position and orientation to be recorded (Figures 4(a) and 4(b)). The tablet
was oriented in landscape mode and participants were free to rotate or move the tablet
but were instructed to keep it on the table and within the orange interaction area.

An active NTrig stylus was provided and participants were instructed to hold it in
their dominant hand (Figure 4(c)). The stylus was modified by adding three markers
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Fig. 3. The experimental setup with the six-camera Optitrack system (highlighted with yellow dashed
circles) and three web cameras (highlighted via green solid circles). The interaction area was marked off
with orange tape.

Fig. 4. The motion capture markers attached to the (a) the front of the Sony Vaio Duo 11 tablet with the
motion capture markers, (b) the back of the tablet with small blocks were affixed to ensure that the motion
capture markers were not moved or damaged, and (c) the Ntrig stylus.
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on the back to track its position and orientation. For calibration, a fourth marker was
added to the tip of the stylus, allowing the position of the stylus tip to be extrapolated
from the remaining three markers during the experiment. The markers added 3g to
the weight and 88mm to the length of the stylus.

The tablet had a resolution of 1,920 × 1,080 and ran Windows 8. The tablet also
ran a custom C# and WPF inking program that recorded all touch and stylus input
from the 64 × 36 sensor array as raw, unfiltered antenna magnitudes. Each individual
sensor detected a contact area of approximately 16mm2. The sensor magnitudes came
directly from the digitizer via specialized software provided by NTrig and were con-
verted into raw touch and stylus data. The data was recorded at 60Hz and bypassed
all Windows-specific formatting, filtering, and rejection approaches. Each ink stroke
was rendered at 60 frames per second, due to the display refresh rate of the tablet’s
screen.

4.3. Tasks and Procedure

The experimental tasks were designed to capture realistic and natural inking behav-
iors. Each task was designed to encourage interaction in all areas of the screen, enabling
digitizer data and behavior to be gathered from a variety of screen locations, not only
the top or center of the screen. Three real-world inking tasks (i.e., writing, tracing, and
document annotation) were designed for use in the study. As explained in the following
text, the annotation task was split into two sections, so in reality, participants com-
pleted four tasks. To prevent fatigue and learning effects, the presentation order of the
activities was counterbalanced across participants.

Participants were instructed to perform each task at a speed comfortable to them
and no time limits were imposed. Participants were instructed to interact naturally, as
if using pen and paper. To facilitate natural behavior, they were informed that touch
input was disabled so that they could rest their hand, fingers, wrist, forearm, knuckles,
and the like on the screen if needed. They were also reassured that such behavior
would not produce any stray markings or accidental gestures and that they would not
see any feedback about any intentional gestures they were asked to make (e.g., swipes).
Although turning off touch input could influence the gestures that participants made,
we deemed it necessary to prevent the digital-only hand postures that were observed
previously by Annett et al. [2014b].

To focus the scope of the study, it was necessary to limit the number and type of
tasks performed. Although activities such as web browsing with the stylus, dragging
or repositioning content with the stylus, or using the stylus to tap on keyboard keys
could have been examined, we wanted to begin the examination of unintended touch by
focusing on the most common, and sought after, use case of styli, namely inking. As the
chosen inking tasks required users to interact with all areas of the screen, the results
should be somewhat generalizable to other scenarios as well. Future work could, of
course, extend on our exploration to identify and understand novel hand postures or
usage patterns that are unique in these scenarios and explore how they would implicate
solutions to unintended touch.

4.3.1. Writing. In the writing task, participants were presented with three 12-digit
numbers and were instructed to write out each number in words (e.g., 123,456,789,101
had to be written as “one hundred twenty-three billion, four hundred. . .; Figure 5(a)).
Participants were instructed to write on the ruled lines similar to traditional ruled
loose-leaf paper and were encouraged to use whichever spacing and writing style they
wished (e.g., printing, handwriting, mixed). No touch-based interaction was needed for
the writing task, leading all touch events captured by the digitizer to be classified as
unintended. The writing task took between 5 and 10 minutes to complete.
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Fig. 5. The tasks used in the data collection experiment, (a) Writing (b), Tracing, (c) the first part of the
Annotation task, and (d) the second part of the Annotation task.

4.3.2. Tracing. During the tracing task, participants were presented with a number
of dashed lines and shapes (Figure 5(b)). Participants were instructed to trace along
each line or shape in the direction of the arrow, in order, starting with the vertical
line marked “1” and ending with the teardrop marked “’16.” Whenever participants
encountered a shaded shape, they were required to shade it in before continuing. A
tracing task was chosen in place of a free-form drawing or sketching task to ensure
that a variety of strokes and movements were performed by the participants and the
movements would be relatively constant across participants. Similar to the writing
task, no touch-based interaction was required. The tracing task took approximately
5 minutes to complete.

4.3.3. Annotation. In the annotation task, participants were presented with a short
excerpt from a novel (Figures 5(c) and 5(d)). Embedded within the excerpt were short
instructions that participants were required to perform. These instructions closely
mimicked the behavior and actions found while reading or annotating a document,
including “scroll down,” “zoom in,” “flip to the next page,” “cross out a word,” “circle and
label,” “tap and hold,” “double tap,” and “draw a hand.” To prevent participants from
performing each action in close succession to the previous one, and as many actions
have a symmetrical counterpart (e.g., zoom in and out), the annotation task was divided
into two parts. Participants thus performed the annotation task twice, using a different
excerpt and set of target behaviors each time (i.e., one task contained “zoom in,” “flip
to the next page,” “scroll up,” and so on, and the other task contained “zoom out,” “flip
to the previous page,” “‘scroll down,” and so on).

As touch was disabled across all tasks, no gesture recognition was implemented, nor
did participants receive feedback once they made their gestures. Each annotation task
lasted between 5 and 10 minutes. The embedding of such actions within the context of
a larger reading task captured behavior in as close to a real-world situation as possible
and ensured that the dataset to contain opportunities for simultaneous pen and touch
interaction.
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Fig. 6. Schematic of the data sources recorded and the synchronization performed.

4.4. Data Synchronization and Processing

The web cameras and Optitrack data were recorded on a desktop computer, and the
stylus and touch data were recorded on the Sony tablet, thus data synchronization
was necessary (Figure 6). The web camera and Optitrack data were synchronized
using timestamps from the Windows clock, as they were on the same machine. The
touch and stylus data were synchronized using a common OS-level clock for recording
timestamps. As identical motion capture data was streamed to both the tablet and
desktop and identical C++ clients were used to record the data, the streaming data
(not the timestamps) was used to synchronize the data across both machines.

MATLAB was used to filter, process, resample, align, and synchronize the different
data streams. Behavioral parameters such as the stylus height during inking and
gesturing as well as the location and size of each touch event were also computed
using MATLAB. The analysis and the comparison of unintended touch algorithms
were performed using C++. When necessary, the VLC media application was used to
analyze the video streams frame by frame.

5. EVALUATION OF SOLUTIONS TO UNINTENDED TOUCH

There are many factors and natural behaviors to take into consideration when design-
ing approaches to unintended touch. Although several tablets report hover, pressure,
tilt, and other sensor data, many do not. Approaches that make use of different sensor
data and other information sources, such as hand models or user handedness, were
thus analyzed.

5.1. Procedure

The ofxtouch OpenFrameworks [2009] connected-components algorithm was first ap-
plied to each frame of the collected data to group the activated sensors into “touch
blobs.” Once the data had been segmented, each blob was tracked frame to frame and
assigned an ID using the ofxtouch blob tracking algorithm. In keeping with the desire
to examine algorithms that introduced the smallest latency possible into the pipeline,
the touch data from the first frame of the touch was used. This ensured that a decision
would be made for every touch event, including those that lasted for only one frame. It
also ensured that the speed of movement after the initial touch activation was not an
influencing factor.

Although the location of the stylus was known for the duration of each task, for every
frame of data collected, the motion capture data was used to determine whether the
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Table I. The Confusion Matrix Used for the Unintended Touch Classification

stylus was located on, above, or beside the screen. Whenever the stylus was not on or
directly above the screen, it was treated as being absent. This was a necessary because
algorithms that required the presence of the stylus or the precise stylus location would
be provided with incorrect data (given the antenna-based techniques used in current
stylus-based systems to detect the stylus). Given that four of participants were left-
handed, handedness-specific information was also integrated into the dataset to allow
an analysis of those approaches that use spatially based information (e.g., ignoring
everything to the right of the stylus for right-handers and to the left for left-handers).
Although displays today do not detect handedness, this was deemed necessary for an
unbiased analysis.

To assess the different unintended touch solutions, each touch was first classified as
either intended or unintended. For the writing and tracing tasks, every touch event was
classified as unintended, since no touch interaction was required during these tasks. In
other words, 100% of the 5,085 touch events generated while writing and tracing were
classified as unintentional and 0% were classified as intentional. For the annotation
tasks, the only intentional touch events were those generated by the fingers while the
participant was zooming, scrolling, flipping, and so on (see Section 4.3.3). To determine
which touch events detected by the digitizer were intended or unintended, the web
camera videos were consulted. As the order in which each participant performed each
gesture was known a priori, the videos were manually analyzed to determine the times-
tamps corresponding to the beginning and ending of each gesture (i.e., “the intentional
touch time period”). These timestamps were then used to classify each touch event as
intended (i.e., the input detected by the digitizer occurred during an intentional touch
time period and the videos illustrated that it was generated by one or more fingers)
or unintended (i.e., the input detected by the digitizer occurred outside the intentional
touch time period or the input detected by the digitizer occurred during an intentional
touch time period but the videos demonstrated that it was not generated the fingers).
Of the 1,218 touch events that were generated during the annotation task, 17% (i.e.,
213) were classified as intentional and 83% (i.e., 1,005) were classified as uninten-
tional. Although the total number and proportion of touch events generated during
the writing/tracing and annotation tasks are not equal, they are representative of the
disproportionate nature of intentional versus unintentional touch while inking.

After the intentionality of each touch event was determined, a contingency table (i.e.,
confusion matrix) was computed for each task, participant, and algorithm (Table I). In
addition to being classified as intended or unintended, each touch event was further
classified as either accepted or rejected. The acceptance or rejection of a given touch
input was dependent on the parameters and techniques specified by the algorithm
under assessment.

To determine the performance of various approaches to unintended touch, all of the
cells in the contingency table were used to compute the accuracy of each algorithm
(Equation (1)). A measure such as accuracy allows equal focus to be directed toward
situations where the user intentionally interacted and the algorithm accepted the touch
event (i.e., true positives) and situations where the user unintentionally interacted and
the algorithm rejected the touch event (i.e., true negatives). Although one may assume
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that the only important aspect of rejection should be the true positives, due to their
necessity for bimanual interaction, it is equally, if not more, important to consider
how algorithms perform during tasks that do not require bimanual interaction, such
as writing or drawing (i.e., evaluate the true negatives). Accuracy allowed such a
comparison.

Accuracy = TP + TN
TP + TN + FP + FN

∗ 100 (1)

While one could use measures such as precision and recall, such measures discount
the importance of the true negatives, that is, unintended touch events that were cor-
rectly rejected. Given that users are more vocal about the stray inking and accidental
navigation that is the result of poor rejection than their ability to perform gestures, it
did not seem reasonable to use such measures. Different weightings could have been
assigned to various cells of the contingency table, but we felt that this would have
resulted in a biased analysis given the tasks users performed. Given the latency re-
quirements detailed in Section 2, it would have also been appropriate to assess the
running time of each algorithm. We opted not to perform this calculation and instead
focus on a measure that was hardware invariant and allowed the algorithms to be
implemented at anywhere along the data pipeline.

5.2. Algorithmic Approaches

There are many possible approaches to unintended touch. In this work, seven ap-
proaches, representative of the spectrum of possibilities today and the foreseeable
near future, were evaluated. The approaches were chosen based on their prevalence in
existing work, hypothesized efficiency, and dependence on additional data resources.

5.2.1. Reject All Touch Events. To set the context for our evaluation, the first approach
that was evaluated was one in which all touch events, regardless of whether they
were intended or unintended, were rejected. This is similar to the approaches taken
by S Note and OneNote, where all touch input is rejected by the application. Although
simple, such an approach effectively eliminates all the issues users reported with stray
markings accidental navigation, while simultaneously preventing gesturing or any
other desired touch-based input.

5.2.2. Contact Area. As access to the raw digitizer data was available, the contact area
of each touch event was computed. The contact area was defined as the number of
sensors activated by each individual touch event, on the first frame that the touch
event was detected by the digitizer. This approach to unintended touch compared the
contact area of each touch event to a number of different thresholds and rejected those
touch events that had an area bigger than the threshold. For example, if a touch event
covered an area of 5 sensors and the threshold was 10 sensors, the event would be
accepted; if a touch event covered an area of 16 sensors and the threshold was 10
sensors, the event would be rejected.

As a number of different thresholds are possible, the thresholds that were evaluated
in the present study were in the range of zero to 2,048 sensors (i.e., the maximum
number of sensors on the device), in one-sensor increments (e.g., 0, 1, 2, 3). Although
some iPad applications make use of the diameter of a touch contact to make rejection
decisions and it is often the first approach many think of when imagining how they
would solve unintended touch, the use of raw sensor data for unintended touch is novel.
Such an approach could easily be integrated within the firmware, operating system, or
specific applications.

5.2.3. Hover-Based Rejection. This hover-based approach mimics the behavior of exist-
ing Windows 7 and 8 devices. With these devices, whenever the stylus is close enough
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Fig. 7. Example of the hover-based region wherein the all touch information would be rejected whenever
the stylus is detected within the green region (box).

Fig. 8. Abstracted illustration of the Vogel Hand Occlusion Model, wherein the stylus location (the solid
green circle) is used to dictate the location of the abstracted hand (i.e., the dashed orange circle) and the
forearm (i.e., the dashed blue rectangle).

to the screen that it can be detected (i.e., the stylus is in the hover state; Figure 7), all
touch input on the screen is ignored. For the present evaluation, the Optitrack data
was used to compute the distance between the screen and the stylus’s nib for each
touch input. Using this information, whenever the height of the stylus’s nib fell below
a predetermined threshold, the whole touch input was rejected; if the nib height was
above the threshold, the touch input was accepted.

Current devices detect the presence of the stylus up to a height of approximately
20mm, but with advances in sensor technology, this could increase further. Such an
approach harnesses the hover state and could make hover-based approaches a viable
option because they allow rejection decisions to start well before the skin touches the
screen. It was thus of interest to evaluate this approach from a variety of possible
detectable stylus heights (i.e., 0 to 200mm, in increments of 1mm).

5.2.4. Hand Occlusion Model. A generalized version of the Hand Occlusion Model algo-
rithm by Vogel et al. [2009] was also implemented. In this model, the hand and wrist
were abstracted into a circle and intersecting rectangle and were located at a specified
distance and angle from the stylus (Figure 8). All touch events falling within the circle
and rectangle are rejected, whereas those outside these areas are accepted. With this
approach, if the stylus is not detected, then any touch input detected by the digitizer
is accepted. As both right- and left-handed users participated in the data collection
experiment, the angle and location of the “palm circle” and “forearm rectangle” were
mirrored when the left-handed participants’ data was used.
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Fig. 9. The nine static rejection regions for right-handed users, with the area and location of the region
being (a) vertical, (b) horizontal, or (c) intersecting horizontally and vertically. All touch events within the
green “safe” areas would be rejected; those outside the green areas would be “unsafe and accepted.” For
left-handed users, the vertical regions would be mirrored horizontally.

The Hand Occlusion Model was evaluated because it has already been applied to
overcome unintended touch in research [Yoon et al. 2013]. The model is hypothesized
to work well for unintended touch because it maximizes the area available for (biman-
ual) interaction and ignores segments of the screen from where unintended touch is
most likely (i.e., from the palm and forearm). In the present work, we decided to use
the generalized model first proposed by Vogel et al. [2009]. Later work by Vogel and
Balakrishnan [2010a] relied on the use of a calibration phase to generate personalized
models for each user. However, given the additional calibration steps necessary, devel-
oper’s resistance toward such steps, and the desire to ensure participants were naı̈ve to
the exploration of unintended touch (i.e., a calibration phase would have alerted users
to the underlying goal of the exploration), the generalized model was used instead.

5.2.5. Static Rejection Regions. Inspired by the approach used with the Moleskine ap-
plication, the use of “static” rejection regions was also evaluated. In these applications,
rejection is performed by specifying a specific rectangular area of the screen that is
“safe” to rest one’s palm or forearm (Figure 9). An overlay is typically used to make the
“safe” and “unsafe” regions of the screen visually distinguishable for users and remains
persistent until the user decides to close them. Rejection that is performed using these
regions looks at every touch input that is generated on the screen and compares the
location of the touch input to the bounds of the “safe” region. If the input falls inside
the region, the input is rejected; if the input falls outside the region, it is rejected.

Although Moleskin relegated their rejection region to cover the bottom third of the
screen, there are many ways in which static rejection regions can be specified. Within
the present investigation, three different region areas (i.e., filling 1/3 screen, 1/2 screen,
and 2/3 screen; Figure 9) and three different spatial partitions (i.e., located vertically,
horizontally, or having a horizontal–vertical intersection; Figure 9) were evaluated.
The examination of the vertical and horizontal–vertical spatial partitions and the 1/2
screen and 2/3 screen areas are novel. The resulting nine rejection regions covered
a range of possible areas, allowing for an extensive evaluation. As these approaches
require only handedness information, rejection decisions can be made very quickly
and along various segments of the data pipeline. For tablets that cannot distinguish
between pen and touch or that do not support hover, static rejection regions could be a
viable option.

5.2.6. Stylus-Based Rejection Regions. One of the downsides of the static rejection region
approach is that the rejection region has little context or information about where one
is currently interacting. As such, it cannot adapt to when one is inking in the top right
corner (i.e., reject more of the screen) or in the bottom left corer (i.e., reject less of the
screen and allow for intentional input almost everywhere else). A novel variant of the
static rejection region approach that solves this issue is to use the current X, Y location
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Fig. 10. Examples of stylus-based rejection regions for right-handed users, with the spatial partioning of
the screen being (a) vertical, (b) horizontal, or (c) intersecting horizontally and vertically. The location of the
region is dictated by the current stylus location (denoted by a solid pink circle). All touch events within
the green “safe” areas would be rejected. For left-handed users, the vertical regions would be mirrored
horizontally.

Fig. 11. An example of stylus-based rejection with a buffer with the spatial partioning of the screen being
(a) vertical, (b) horizontal, or (c) intersecting horizontally and vertically. In this approach, the stylus-specified
region extends away from the stylus location toward the dashed orange line. Touch events falling into the
green “safe” region are rejected. For left-handed users, the vertical regions would be mirrored horizontally.

of the stylus to provide context for rejection. As the X,Y position indicates where one is
currently interacting, it can dictate the location and bounds of a rectangular rejection
region (Figure 10). Consider the use of a vertical rejection region. If the stylus is located
at x = 50 and the participant is right-handed, a stylus-based rejection region would
reject all touch events to the right of the stylus (i.e., x > 50) and accept those touch
events that fall to the left of the stylus (i.e., x < 50). If the stylus were to move to x
= 600, the rejection region would move as well, rejecting everything > 600 pixels and
accepting everything < 600 pixels.

Similar to the static rejection regions, there are a number of spatial partitions that
can be used to dictate the bounds of the rejection region. Within this exploration, stylus-
based regions that were horizontal, vertical, or had a horizontal-vertical intersection
were evaluated (Figure 10). Such regions should allow rejection to be performed quite
quickly and along various segments of the data pipeline but does require the stylus
location for the region to be specified.

5.2.7. Stylus-Based Rejection Regions Using a Buffer. Although the stylus-based rejection
regions harnesses contextual information, they assume that the stylus will always be
located above the palm, wrist, or forearm. As Annett et al. [2014b] demonstrated in
prior work, not all hand postures follow this form. For example, hand postures that are
inverted or “hooked,” result in a nib location below or to the right of the palm or fingers.
Based on the variety of hand postures observed, a novel variant of the stylus-based
rejection region approach was evaluated. With this approach, a virtual “buffer” was
extended out and away from the stylus-specified region (Figure 11) to accommodate
such hand postures. Now, any touch input located within the stylus-specified region
or the buffer region would be rejected; touch input in any other areas of the screen
would be accepted. If we consider the vertical screen partition, what would happen if
a 75 pixel buffer (∼10cm) was used (and the user was right-handed)? If the stylus was
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Fig. 12. The accuracy results for the Writing/Tracing and Annotation tasks when all touch events are
rejected.

located at x = 875, for example, any touch input whose location was greater than x =
800 would be rejected, anything less than x = 800 would be accepted.

The use of “buffers” should accommodate the variety of hand postures used while
inking [Annett et al. 2014b] and should be more robust to wrist and hand rotations
[Fitzmaurice et al. 1999]. As the use of the stylus to specify the rejection region and
“buffers” are novel, a variety of buffer dimensions ranging from 0 to 50mm were eval-
uated, in increments of 1mm. Similar to the static and stylus-based rejection regions,
spatial partitions that were horizontal, vertical, or had a horizontal-vertical intersec-
tion were evaluated. This approach should allow rejection to be performed quite quickly
and along various segments of the data pipeline, but of course requires that the stylus
location is known.

5.3. Evaluation of Individual Algorithms

As the writing and tracing tasks did not contain any opportunities for intentional
touch input, the proportion of intended versus unintended touch events within these
segments of the dataset is skewed. Collapsing across the four tasks and combining all
of the task data together would have resulted in a biased accuracy measure. Thus,
we chose to separate the tasks into those that contained opportunities for touch input
(i.e., the two annotation tasks) and those that did not (i.e., writing and tracing). By
evaluating these datasets separately, we were able to determining how an approach
would fair in situations that are increasingly likely in the future (i.e., bimanual input as
represented by the annotation task) and those that users encounter today (i.e., writing
and tracing without the desire for bimanual input). For the analysis, behavioral data
gathered from the webcams, motion capture system, and digitizer were used where
appropriate.

As there are many possible parameter variations applicable for a given approach
(e.g., 200 different hover heights or 2,048 potential contact sizes) and each approach
makes such of different data streams that were collected (e.g., hover height versus
stylus location, others require both stylus and touch information), we first report on
an individual analysis of each approach. Section 5.3.8 provides a summary of each
algorithm’s best results with respect to the raw contingency table values that were
recorded. In Section 5.4, we identify the optimal parameters for each approach and
utilize such information to statistically compare the algorithms against each other.

5.3.1. Reject All Touch Input. Unsurprisingly, taking an approach that rejects all touch
input performs perfectly when no intentional touch input is generated, that is, with
100% accuracy during the Writing and Tracing tasks (Figure 12). When the Annotation
task is considered, the accuracy is proportional to the amount of unintentional touch
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Fig. 13. Accuracy results for the (a) Writing/Tracing tasks and (b) Annotation tasks. There were not changes
in accuracy from 200 to 2,048 sensors, so these values have been removed from the graphs for clarity.

input found in the dataset, that is, 83%. These results provide context and a baseline
against which the remaining six approaches and their variations are considered.

5.3.2. Contact Area. The analysis determined that, regardless of opportunities afforded
for intended touch, as the threshold of allowable contact areas increased, accuracy
decreased (Figures 13(a) and 13(b)). Because the intersensor spacing of the digitizer
was approximately 4mm, the average finger activated a median of approximately four
sensors (IQR = three sensors). Rejecting touch events at this threshold resulted in
51% accuracy while writing/tracing and 38% accuracy while annotating. Once the
allowable contact area increased beyond 4 sensors, accuracy continued to decrease
until it leveled off at approximately 60 sensors (i.e., 1% while writing/tracing and 18%
accuracy while annotating). The disparity found when annotating versus writing and
tracing emphasizes the small contact area that most touch events, not just the fingers,
activate when they initially touch the screen.

An analysis of the digitizer data makes it clear why the contact area approach
is not sufficient. When we removed the intentional “finger” touch events from the
dataset, that is, everything activating fewer than four sensors, and examining the
initial area and growth of the remaining unintentional touch events, we found that most
unintended touch events initially resembled a finger or group of fingers (Figure 14). If
one looked exclusively at their size, intentional and unintentional touch events were
thus indistinguishable. When we looked at the initial shape of the intentional versus
unintentional touch events, they appeared visually indistinguishable. The activated
sensors did not form ovals or circles, as one would expect [Murugappana et al. 2012].
The activated sensors often appeared as straight lines or irregular, jagged shapes
(Figure 14, at 0ms). Given the indistinguishable nature of these events, the use of
contact shape or size thus appears to be infeasible, as it is impossible to initially
identify intentional finger-based touch input from other unintentional input.

We also looked at the growth of touch events over time to determine at which point an
intentional touch event grows to be distinguishable from an unintentional touch event.
It was determined that touch events initially activated a very small number of sensors
(Mdn = six sensors, IQR = nine sensors) and did not grow to a differentiable size
(i.e., larger than four sensors) until approximately 33ms after their initial activation
(Figure 15). Such a slow rate of growth explains why a contact-based approach cannot
be successful: both intended and unintended touch events initially appear the same to
the digitizer and take much too long to become differentiable. Waiting for the contact
areas to merge and stabilize before making a rejection decision is not feasible, especially
when current system latencies are easily perceptible by users and less than 5ms are
available for rejection decisions. Although the system recorded touch and stylus data
from the digitizer at 60Hz, increasing the sensor density or sampling rate would have
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Fig. 14. Examples of different touch events that initially activated a small number of sensors (denoted by
shades of orange) and later grew to their full size. Note that the initial shape and direction of the touch input
does not represent the eventual shape and orientation of the touch input.

Fig. 15. The area of each non–finger touch event on the first, second, third, and so on frame of its existence.
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Fig. 16. Accuracy results for the (a) Writing/Tracing tasks and (b) Annotation tasks while the current height
of the stylus was used for rejection.

Fig. 17. The median nib heights measured during the different gestures performed throughout the Anno-
tation tasks. Error bars represent the standard error of the mean. The measurement error of the motion
capture system was within ±1mm.

no effect on the real-world speed at which the contact area grows, leaving the accuracy
largely unchanged.

5.3.3. Hover-Based Rejection. The stylus height obtained from the motion capture
system revealed that accuracy increases as the detectable hover height increases
(Figure 16). At the hover height specified for Windows machines today (i.e., 20mm), cor-
rect rejection occurs 88% of the time when intended touch is not generated (i.e., writing/
tracing tasks) and 82% of the time when it is generated (i.e., annotation task). When-
ever the detectable hover height is less than 20mm, accuracy drops to 31% to 47%
when there is intentional touch interaction, but only 48% to 87% when there is only
unintended interaction (i.e., during writing and tracing). The disparity between the
two scenarios is likely a by-product of the natural height at which the user holds the
stylus while interacting with their nondominant hand (see later discussion). With ad-
vances in hover height detection, the accuracy of hover-based rejection would continue
to increase, achieving approximately 96% accuracy at 100mm and 100% accuracy at
200mm with no intended interaction, and 82% accuracy at 100mm and 83% accuracy
at 200mm when intended interaction is permitted. This is similar to what was found
for the Reject All Touch Input approach examined earlier.

As it is likely that hover heights will increase beyond the 20mm standard possible
today, behavioral data gathered from the motion capture system suggests that hover
will interrupt intentional unimanual and bimanual touch interaction. Across all of the
gestures participants performed, the median nib heights were below 20mm except for
the Zoom Out and Zoom In gestures (27mm and 30mm, respectively; Figure 17). These
nib heights largely reflect the range of stylus-manipulation techniques participants
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Fig. 18. Accuracy results while using the Hand Occlusion Model during rejection for the (a) Writing/Tracing
tasks and (b) Annotation tasks.

used. Most participants tucked the stylus behind their index finger to allow the index
finger and thumb to gesture (80%). Such gestures were often restricted to low, short
flicking finger motions that ensured that the stylus nib stayed close to the screen.
Other participants grasped or clenched all of their fingers around the stylus (10%) or
used their nondominant hand to gesture (10%). The grasping motion allowed longer,
more elongated gestures, which elevated the nib height, whereas when the nondom-
inant was used to gesture, the stylus and hand did not change position. Although
gesturing occurred infrequently during inking, the majority of these gestures would be
rejected, aggravating users. Given these natural behaviors, it is important to consider
the impact that raising hover heights above their current threshold levels would have
on interaction. As the detectable hover heights increase, designers need to carefully
consider how they inhibit or support various bimanual interactions.

5.3.4. Hand Occlusion Model. The Hand Occlusion Model, unfortunately, did not ex-
hibit promising results (Figure 18). Across all detectable stylus heights, accuracy was
slightly better during the annotation task. The hand posture parameters specified for
the general model resulted in 18% accuracy (at 20mm) when no intentional interac-
tion was generated and 30% accuracy when intentional interaction was permitted (i.e.,
during the annotation tasks). If stylus detection was possible at higher heights (i.e.,
up to 200mm), accuracy would marginally increase to 20% during writing and tracing,
but stay at 30% while participants annotated. The disparity between the intentional
and unintentional input scenarios (i.e., writing and tracing versus annotation) are
likely due to the nature of the Hand Occlusion Model itself, which specifies the largest
possible “safe” area for intended interaction. Although the model allows for increased
intended interaction (as evidenced by Figure 18(b)), its lack of support for unintentional
interaction resulted in the poor accuracy performance that was found.

The overall inadequacy of the Hand Occlusion Model is likely based on two factors, the
frequency of stylus location information and the “shape” of the activated touch input.
An analysis of the motion capture data determined that the majority of the generated
touch events were rejected due to insufficient stylus data. As per the requirements of
the model, whenever touch input was initiated and the stylus was not present, the touch
input was accepted (i.e., treated as a false positive). The motion capture data revealed
that participants held the stylus nib approximately 22mm (SEM = 9.27) above the
surface when their palm first touched the screen. When transitioning the stylus from
one line to the next, the stylus was held higher, with the nib approximately 47mm
from the screen (SEM = 4.32). Such behaviors ensured that the stylus was outside the
range currently detectable today and explain why more touch events were incorrectly
accepted from 0 to 47mm. When we consulted the video data, we also found that many
participants used the bottom or side device bezel to stabilize the arm (Figure 19). This
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Fig. 19. Participants resting their forearm on the bottom bezel (and subsequently the bottom of the touch
screen) that generated touch input (emphasized using a solid, green circle).

often resulted in the forearm crossing the bezel and generating touch input on the
screen, much in advance of the wrist, palm, fingers, and stylus touching the screen. As
the stylus height during this behavior far exceeded the detectable regions we tested,
these touch events were incorrectly accepted, even when the stylus was detected at
200mm.

The generalized Hand Occlusion Model was also insufficient when one considers the
shape of activation generated by the participant’s hand postures. Some participants
used an inverted or “hooked” hand posture [Levy and Reid 1978] (Figures 20(a), 20(c),
20(d)), whereas others used a more natural posture [Annett et al. 2014b], holding the
stylus such that the nib was in a diagonal line with the palm and forearm (Figure 20(b)).
These behaviors resulted in a majority of unintended touch input falling outside the
generalized circle of the palm or rectangle of the forearm. While creating a personalized
version of the hand model that could rotate farther from the nib (e.g., Figure 20(c)),
translate closer to the nib (e.g., Figure 20(b)), or rotate the “forearm” rectangle (e.g.,
Figures 20(a) and 20(d)) could eliminate some of these issues, the model would need
to be continually updated on a stroke-by-stroke [Fitzmaurice et al. 1999], task-by-task
[Annett et al. 2014b], or device-by-device basis. This would degrade the user experience
and likely introduce additional application-specific latency into the latency pipeline.

5.3.5. Static Rejection Regions. The static rejection region approaches performed quite
well (Figure 21), partitioning the screen vertically (maximum rejection of 89% for
writing/tracing and 78% for annotation) was superior to horizontally (maximum rejec-
tion of 69% for writing/tracing and 75% for annotation) and horizontally was superior to
using a vertical-horizontal intersection (maximum rejection of 58% for writing/tracing
and 44% for annotation). When considering the proportion of the screen “safe” for in-
teraction during writing/tracing, those covering two thirds of the screen (maximum
rejection of 89%) were superior to those covering half the screen (maximum rejec-
tion of 70%) and a third of the screen (maximum 49%). For the annotation tasks,
those regions that covered two thirds of the screen (maximum rejection of 78%) were
superior to those covering half the screen (maximum rejection of 72%) and a third
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Fig. 20. Examples of various hand postures that fell outside the generalized Hand Occlusion Model. The
skin input is denoted in shades of orange, the stylus location is denoted in blue, and the Hand Occlusion
Model’s abstracted circle and rectangle are green.

Fig. 21. The accuracy found for various static region-based approaches while participants were (a) Writing/
Tracing and (b) Annotating.

of the screen (maximum 66%). Across all manipulations, a maximum of 87% correct
rejection was found for the writing/tracing tasks and 79% for the annotation tasks.
Thus, there appears to be a general trend toward screen partitions that rejected touch
input from the largest vertical area. Vertical rejection regions likely work well because
they capitalize on the natural ergonomics and kinetics of the lower arm. When on the
screen, the wrist, forearm, and hand generally fall along a diagonal or vertical line and
are normally oriented vertical instead of horizontal.

To better understand the performance of the various configurations, the locations of
all touch inputs generated by participants were graphed using heat maps (Figure 22).
In the writing tasks, most touch events occurred in the bottom right quadrant of the
screen, where the forearm, wrist, and palm rested while right-handed participants were
writing (Figure 22(a)). Surprisingly, touch input was not simply mirrored to the bottom
left for the left-handed participants. Instead, left-handed participants exhibited unique
behaviors, generating many more touch events along the left and top edges. In the
tracing tasks, touch input for both handedness populations was much more dispersed
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Fig. 22. Heat maps of all touch input generated by all participants for the (a) Writing, (b) Tracing, (c) the
first Annotation task, and (d) the second Annotation task. The heat map data has not been normalized.

and found in many different locations of the screen (Figure 22(b)). The hot spots found in
the center and along the left and bottom right bezels are indicative of areas where users
rested their arms on the screen while completing the drawing tasks in each quadrant.
As much less interaction was required in the annotation tasks, it is not surprising that
input was found in the same areas for all participants (and somewhat mirrored for
left-handed participants, Figures 22(c) and 22(d)). As interaction was restricted to key
areas for each participant, touch input patterns were concentrated in these locations.

These task-dependent differences help explain why static rejection regions are a
popular and reasonable first choice for unintended touch. They harness the task con-
text and hypothetical behavior found with these tasks to eliminate the majority of
unintended touch events (e.g., those occurring in the bottom right for right-handed
participants). As writing and tracing required interaction in all areas of the screen, it
is unsurprising that the larger rejection regions worked better than the smaller ones.
Although the typical distance between the hands, while performing bimanual actions,
has yet to be explored, the similar results found between the writing/tracing and an-
notation accuracy results suggest that the 2/3 vertical split left enough room for users
to interact bimanually when they needed to (i.e., during the annotation task).

5.3.6. Stylus-Based Rejection Regions. The use of the stylus to specify the location of
various rejection regions showed a similar trend to the static rejection regions: the use
of a vertical region was better than a horizontal region, and both were better than a
horizontal-vertical intersection (Figure 23). Based on the distribution of touch events
presented in Figure 22, it makes sense that approaches that were most accommodating
to unintended touch and the natural behavior or users would be successful. Across
both writing/tracing and annotation, increasing the detectable stylus height (i.e., the
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Fig. 23. The accuracy of stylus-based rejection while using different rejection regions and when the stylus
is detectable from different heights. Image (a) contains data from the Writing/Tracing tasks and (b) contains
data gathered during the Annotation tasks.

instances where touch events had corresponding stylus information), lead to a slight
increase in performance. Given the technical limitations of stylus detection today (i.e.,
up to 20mm), a maximum of 62% accuracy was possible with the vertical partitioning
for the writing/tracing tasks and 46% for the annotation task. If a tablet could detect the
stylus up to 200mm from the screen, accuracy increased to 68% and 50%, respectively.

What was found to differ with stylus-based regions is that accuracy decreased when
intentional touch was supported (i.e., annotation tasks). The nature of the touch and
stylus input was quite different during the annotation tasks. Instead of being able to
drag the hand around the screen from left to right and top to bottom, the annotation
task naturally encouraged replanting behavior [Annett et al. 2014b], that is, partici-
pants placed their hand on the screen, performed an action, picked it up and held it
in the air, replanted it in a different area of the screen, and so on. This intermittent
behavior resulted in many more touch events that could not be classified because infor-
mation about the stylus was missing. Similar to the Hand Occlusion Model, the success
of stylus-based rejection regions depends on the availability of the stylus location. Al-
though the location of the stylus was tracked at all times, the higher the stylus is in
the air, the more uncertainty there is regarding where it would eventually land on the
screen due to the range of motion possible via the degrees of freedom afforded by the
elbow, wrist, and fingers. This uncertainty manifested itself in decreased accuracy.

The decreased accuracy across all tasks exhibited by the stylus-based rejection re-
gions (compared to the hover and static rejection regions) is also due to the variability
of hand postures that could be used while interacting. Although information about the
stylus location could provide context as to where the user is interacting, the video and
touch data revealed that such context information is not very useful. An analysis of the
hand and wrist postures determined that the use of natural and inverted hand postures
placed contacts outside the specified rejection area (Figure 24). On many occasions, the
stylus location fell in line (Figure 24(b)), far below (Figures 24(a) and 24(d)–(f)), or
to the side (Figure 24(c)) of the touch input in question. For this reason, the largest
rejection region, the vertical screen partition, was the most tolerant to nontraditional
hand postures and rotations of the wrist. Ignoring only the touch events in the bottom
or bottom right corner was too inflexible, as the hand reorients as it moves toward
the bezels and bottom of the screen. The use of larger “safe” areas accommodates the
potential movement of the wrist and hand throughout the task.

5.3.7. Stylus-Based Rejection Regions Using a Buffer. The results obtained with the stylus-
based rejections using a buffer demonstrate the same general trend as the static rejec-
tion regions and stylus-based rejection regions: the use of a vertical partioning worked
best for rejection (i.e., maximum accuracy of 80% accuracy while writing/tracing, and
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Fig. 24. Examples of various touch inputs generated by participants that would be incorrectly accepted
when the stylus location is used to define the rejection region. The skin contact is denoted in shades of
orange, the touch input under consideration is circled with a solid orange line, and the stylus location is
highlighted using a blue dashed line.

Fig. 25. Accuracy of the stylus-based rejection region approaches with different rejection partitions while
(a,c) Writing/Tracing and (b,d) Annotating. Images (a,b) illustrate the accuracy when the stylus is detectable
from 0 to 20mm and (c,d) illustrate the accuracy when the stylus is detectable from 0 to 200mm.

71% accuracy while annotating; Figure 25). Given the distribution of touch events in
Figure 22 and the vertical region being attuned to the anatomy of the hand, these re-
sults underscore the importance of harnessing natural user behavior and observations
for unintended touch.

The results also illustrate that as the size of the buffer increased, so did the accuracy
(e.g., the vertical partition saw an increase from 62% to 72%, Figure 25(a); from 65%
to 72%, Figure 25(b); from 68% to 80%, Figure 25(c); from 64% to 71%, Figure 25(d)).
When we consider this “best case,” that is, vertical partition, and the stylus is detectable
from 0 to 20mm, a 50mm buffer will result in 72% accuracy when only unintentional
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Fig. 26. A demonstration of how the use of a buffer can accommodate many of the unintended touch events
that were incorrectly accepted in Figure 25. The skin input is denoted in shades of orange, the current touch
blob under consideration is circled via a solid orange line, the detected stylus location is highlighted by a blue
dashed circle, and the resulting stylus location after a 50mm buffer was added is highlighted via a yellow
rectangle.

touch is considered (i.e.,, writing and tracing) and 71% accuracy when intended and
unintended touch is allowed (i.e., annotation). If the stylus can be detected from 0 to
200mm, accuracy increases slightly to 80% while writing/tracing and stays the same
while annotating. Although we did not statistically analyze the writing/tracing and
annotation tasks, there was little difference between them, save the slightly higher
variance between the spatial partitions during annotation. The results thus demon-
strate that the larger the buffer region, the greater the increase in accuracy, illustrating
that the buffer succeeded in accommodating the variety of hand postures likely during
inking and that rejection was largely not influenced by the desire to perform intended
versus unintended touch.

The touch-based data from Figure 22 demonstrate that participants may not always
use a “natural” hand posture. It is thus not surprising that an approach that accommo-
dates variations in posture, grip, or general anatomy is more successful than one that
cannot. When we reassess the instances where user behavior resulted in the stylus-
based rejection regions failing (from Figure 25), the use of a buffer would eliminate
the unintended touch created by the palm wrist, fingers, and forearms (Figure 26). Al-
though the buffer does increase the likelihood that hand posture can be accounted for,
it does, of course, require that the stylus location is always known. Although the use of
a buffer resulted in better performance, there were still a number of unintended touch
events that were accepted due to the stylus being above or outside the detectable stylus
range (and thus the rejection region location and boundaries could not be determined).

Given that the palm or forearm often touches the surface before the stylus, these
results provide even more support for acquiring data as soon as possible. If the stylus
location was always known, possibly using technology other than what is available
today, this approach could work better because it can harnesses contextual information
about where the user will be interacting. When combined with handedness, it becomes
very powerful, allowing for a variety of hand postures and supporting many bimanual
input techniques.

5.3.8. Aggregated Contingency Table. As many parameters and variations were evalu-
ated for each algorithm, it would be unwieldy to present the raw contingency tables
for each variation that was examined. Thus, an aggregated summary of the raw
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Table II. A Summary of the Aggregated Raw Contingency Tables Found for Each Algorithm
That Was Evaluated

The percentage of true positives (TP), true negatives (TN), false positive (FP), and false negatives (FN)
are presented within the brackets.

1Contact area of four sensors.
2A detectable stylus height of 20mm.
3A detectable stylus height of 20mm.
4A vertical rejection region covering 2/3 of the screen.
5A detectable stylus height of 20mm with a vertical rejection region.
6A detectable stylus height of 20mm with a vertical rejection region and a 50mm buffer.

contingency table values (i.e., number of the true positives, true negatives, false
positives, and false negatives) can be found in Table II. The presented data illustrate
the best results found for each algorithm given the technological capabilities of today
(i.e., the detectability of the stylus up to 20mm) and the most reasonable parameters.

5.4. Comparative Evaluation of Algorithms

The exploration thus far has focused on algorithmic approaches that have many pos-
sible variations and options. Participants’ behavior helped explain why some of the
approaches were successful in natural inking settings, and found the same trends re-
gardless of the task and underlying amount of intentional versus unintentional touch
input. At the same time, the results underscored the importance of understanding
user behavior during inking and the complexity of unintended touch. What is missing,
however, is a comparison and understanding of the approaches that are best suited for
unintended touch, equally weighing accuracy and the limitations of each approach, the
required functionality, and how they would impact the cohesion of user experiences
across the stylus and tablet ecosystem.

5.4.1. Methodology. As each of the approaches use different types of data and rely on
different assumptions, an analysis was performed of how they fared against each other
when the technological restrictions of tablets and styli were removed. A comparison
of each approach, from the perspective of today’s technology and the technological
improvements likely in the foreseeable future, was then performed using the optimal
parameters and results for each algorithm from Section 5.3 (Table III). Given that the
same trends were found across the writing/tracing and annotation tasks, the data was
aggregated to remove task as a factor. Note that even with technological advancements,
not all approaches will improve (e.g., increases in sensor density will increase the
number of sensors that are activated uniformly).
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Table III. Parameters Used in the Comparison of Different Unintended Touch Algorithms Given Current and
Future Hardware and Software Functionality

Fig. 27. Comparison of the unintended touch algorithms evaluated using present day and hypothetical
future functionality.

Using the parameters in Table III, a two-way ANOVA with the factors of Function-
ality (Present, Future) and Algorithm (Contact Area, Hover, Hand Occlusion Model,
Static Rejection Region, Stylus-Based Rejection Region, and Stylus-Based Rejection
Region with a Buffer) was run using the accuracy values determined from the contin-
gency table for each participant.

5.4.2. Results. The ANOVA results demonstrated that Functionality significantly in-
fluenced accuracy (F1,15 = 5.0, p < .05) as did Algorithm (F2.3,35.0 = 30.6, p < .001;
Figure 27). There was no evidence of a Functionality by Algorithm interaction (F1.4,20.8 =
2.6, p = 0.112). Increases in technological functionality and capabilities led to small,
but significant, enhancements in the performance of some algorithms that were eval-
uated (Present: M = 62.73, SEM = 3.00; Future: M = 65.56, SEM = 3.20; p < .05),
namely the Hover (i.e., 6% improvement in accuracy), Stylus-Based Rejection Region
(i.e., 5% increase in accuracy), and Stylus-Based Rejection Region with Buffer (i.e., 4%
increase in accuracy) approaches.

Post-hoc Bonferroni-adjusted paired t-tests demonstrate that some approaches are
much better suited for unintended touch than others (Table IV). Approaches that made
use of stylus data or supported larger “safe” areas of the screen (i.e., Hover, Static
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Table IV. Pairwise Comparisons between Unintended Touch Algorithms

*denotes significance.

Rejection Region, Stylus-Based Rejection Region, and Stylus-Based Rejection Region
with Buffer) outperformed those using generalized data sources with smaller “safe”
areas, such as Contact Area or the Hand Occlusion Model. It thus appears that the size
of the “safe” versus “unsafe” areas and the use of contextual and peripheral information
to specify the location of these areas (e.g., current task, stylus height, stylus location)
are important to unintended touch.

5.4.3. Discussion. The comparative analysis found a significant difference between
Contact Area and the Hand Occlusion Model. Given that the Hand Occlusion Model
relies on the stylus location and has a very narrow spatial area within which touch
input is allowed, it is not surprising that the Hand Occlusion Model performed worst
of all the approaches. As shown in the individual analysis, participants’ hand postures
were quite variable, rarely conforming to the abstract generalization that the Hand
Occlusion Model required. Although one could make use of a trained, adaptive hand
model, the task-by-task heat maps show that, depending on the requirements of a task,
participants exhibit drastically different hand patterns from start to finish, especially
in the more free-form tasks, such as tracing and annotating. Apart from the problem
of variable hand behavior, personalized hand models would need to be relearned when
transitioning to a new device, form factor, or task. This would likely involve a calibration
phase, something many developers are very resistant towards.

By comparison to the other four approaches, the use of Contact Area performed no
better than chance, due in large part to the length of time necessary for each touch
event to grow to a distinguishable size before rejection could occur. For the Contact
Area approach to be more successful, touch input would need to be provided before
skin touches the screen (i.e., when the hand or forearm is within the “hover” state).
This would then allow the disambiguation and rejection processes to begin before
touch input activates the digitizer and possibly soon enough for correct rejection and
acceptance to occur.

As there are no significant differences between the top four approaches, it cannot be
claimed that one is superior to the others. There are a number of marginally significant
results, however, that can be used to better understand where to devote research
resources in the future. The Hover approach is significantly, or marginally significantly,
better at unintended touch than the other approaches. In essence, the use of hover
creates the largest rejection region: the whole area of the screen. This makes it the most
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tolerant to nontraditional hand movements and positions but limits its usefulness for
scenarios where bimanual interaction is desired. As the rejection region gets smaller,
either because it is bounded by the stylus location, the buffer dimensions, or the screen
partitioning, the success of space-based approaches decreases. The results found with
the Stylus-Based and Static Rejection Regions support this conclusion.

The marginal difference between the Buffer and Non-Buffer Stylus-Based Rejection
Region approaches demonstrates that allowing a “spatial cushion” around the stylus
is a simple but effective way to accommodate rotations of the wrist and palm. Fur-
thermore, the relatively small rejection area allows for some bimanual interaction,
which is not supported by the hover-only approach. Future approaches that use stylus
location should consider integrating a similar spatial cushion. Based on the heat map
distributions presented earlier, the Static Rejection Region approach did a good job of
rejecting unintended touch in tasks where the hand is anchored on the screen in a
predictable manner (i.e., while writing). As no stylus information is needed, rejection
occurs quickly, and it does not result in false positives whenever the stylus location is
not present. With applications such as note-taking on capacitive devices, it would be
beneficial to use such a region, as it would prevent most unintended touch interaction.
Coupling a visual representation with the rejection region allows users to understand
where they can rest their palm without disrupting their work and increases the likeli-
hood they will write as naturally as possible.

It is important to note that the three approaches that make use of stylus information
are influenced by the detectability of the stylus. When the stylus location is not known
(i.e., above 20mm or 200mm for the Present and Future conditions), the algorithms
report false positives. Similar to the touch information required for the contact size, it
would also be beneficial to receive stylus and touch input as soon as possible, before
the stylus or skin touches the screen if it is technologically feasible.

6. OVERALL DISCUSSION

The present exploration indicates that there are many elements that contribute to
unintended touch, making the problem, and choice of an unintended touch solution,
very complex. Although our underlying dataset does not contain an equal number of
intentional versus unintentional touch events, we believe that the dataset and results
are representative of the distribution of such events common during real-world inking
tasks, wherein the frequency of unintended touch almost always outweighs intended
touch. For example, while taking notes during a lecture, it is likely users would only
intentionally touch the screen whenever they needed to scroll the page. Such behavior
results in a drastically smaller proportion of intentional compared to unintended touch
events, due in large part to the frequency of the hand dragging or being replanted on the
screen [Annett et al. 2014b] compared to page scrolling. As such, approaches that focus
on, or are slightly biased toward identifying unintended touch instead of intended
touch (e.g., Hover, Static Rejection Region) would perform better (e.g., Stylus-Based
Rejection Region, Stylus-Based Rejection Region with a Buffer).

The similar trends found in the individual algorithm analysis, exemplifies that the
more opportunities and support are provided for intentional touch, the more contextual
knowledge regarding user behavior is required. If one considers a sketching application
that allows users to zoom in and out via a pinching gesture to add details or perform
shading, for example, successful approaches to eliminate unintended touch will need
to be increasingly cognizant of the multitude of hand postures possible, the frequency
of screen reorientations [Fitzmaurice et al. 1999], the likely diverse distribution of un-
intended touch events around the screen, and the increased frequency of intentional
touch events depending on the level of detail required by the user. Although the present
study did not evaluate such scenarios and we chose to eliminate touch-based feedback
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Table V. Comparison of Unintended Touch Approaches

for the user, it is easy to see the importance of further exploring and understanding
natural user behavior to inform the design of unintended touch algorithms. The abun-
dance of pen and touch work performed over the last few years has generated many
novel interaction techniques and possible gesture taxonomies, but unfortunately the
most basic of knowledge is missing, for example, about the relative spacing between the
hands while interacting bimanually, the orientation of the hands and stylus relative
to each other and the screen, the prevalence of bimanual over unimanual interaction,
and so on. Such knowledge will greatly improve the models of inking behavior that can
be build and integrated within unintended touch solutions.

In what follows, the accuracy results and observed participant behavior are situated
within the context of real-world demands and technological implications. Potential
avenues for future research are also explored, focusing first on the benefits of differ-
ent data streams and then detailing various hardware advancements and software
modifications that could greatly improve the problem of unintended touch.

6.1. Factors Important for Unintended Touch

The goal of any pen and touch system or application is to allow a transfer of the
seamless, interleaved bimanual interaction found in the physical world to the digital
world. It is thus imperative that developers be mindful of the limitations that a given
algorithm may place on interaction. In addition to accuracy, there are several other
factors that need to be considered when understanding the approaches that could be
viable in the future (Table V). In some contexts, such as a writing application where
a user may only need to scroll periodically, a hover-based approach may work well,
whereas in a sketching application, interleaved zooming and inking may be required
frequently, resulting in that same hover-based algorithm to underperform and cause
frustration for users.

Algorithms implemented at the application level also allow context-specific rejections
and application-specific interactions, but they do so at the cost of a fragmented user
experience that is inconsistent across applications and tasks. Firmware and operating
systems promote a unified user experience but must be primitive, making use of a more
generic, context, and functionality-free designs. Depending on the needs of a developer
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or the end user population, the most accurate approach may be too restrictive for the
ecosystem.

Approaches that make use of handedness or harness data made available by an
active stylus lead to enhanced accuracy but fragment the user experience. They are
inappropriate for capacitive touchscreen devices that only support passive styli. If a
lower price point is targeted, the cost of integrating an active stylus may outweigh
the benefits perfect rejection would provide to users. The desire to capitalize on, and
integrate, spatial data adds an additional requirement that a device must be aware
of orientation, rotation, and handedness to be successful. As the detection of rotation
and handedness are still in the research stage, one may be forced to sacrifice the
expectations of certain populations or use cases.

Until unintended touch can be solved completely, it is imperative that the algorithms
and metaphors employed are discoverable and easy to understand. When the data
collection experiment began, many participants were surprised that it was technically
possible to rest the skin on the screen while interacting, “It allowed me to interact
so naturally—it was like I was writing on paper!” In the postexperiment debriefing,
participants who had prior experience with inadequate unintended touch reaffirmed
the results found by Annett et al. [2014b], expressing great frustration with current
devices today: “I never know what I do that causes the screen to zoom or random
marks to appear,” “It is so difficult to write with an iPad because some applications
work fine, but in others my palm messes everything up and I get really upset,” and
“Your system worked great! My hand never made a mark . . . I wish others were like
that.” Users were very quick to determine if an approach does not work (i.e., they
can’t place their hand), but they are likely to have difficulties determining why or how
to adapt their behavior to overcome unintended touch. Given the fragmentation and
variety of unintended touch algorithms used today, these comments highlight the need
for consistent approaches to unintended touch. Designers and developers must explore
a variety of use cases when designing solutions and mindfully consider ways to either
alert the user if an approach falters or provide fluid, intuitive ways to overcome and
avoid errors.

Given these factors and the accuracy results, it becomes clear that there is no easy
solution for unintended touch. When evaluating and implementing potential solutions
to unintended touch, designers and developers must prioritize and balance the re-
quirements of their end users, the interaction they desire, and the consistency of their
applications or operating systems within the tablet ecosystem and across their appli-
cation suites.

6.2. Using Additional Data Streams

Although the approaches tested here used only hover and stylus location, there are
many other approaches and streams of data that could be harnessed for unintended
touch in the future. While the use of the hover state alone for rejection is not advocated,
the “pretouch” information it provides is valuable. If decisions can begin before the
user touches the screen, with either the hand or the stylus, the likelihood of incorrectly
rejecting or accepting touch will decrease. Recently, some mobile phones have begun
to ship with support for “touch hover,” enabling for in-air gesturing with the finger or
hand [Samsung 2013; Sony 2014; STMicroelectronics 2014]. Such data could greatly
improve unintended touch, as information could be obtained about the type of contact
before it reaches the screen. This information could boost the performance of many
of the algorithms evaluated here, in essence allowing for two-stage disambiguation
and classification. Given the widespread availability of such information in the mobile
world, it is only a matter of time before such information will be available on larger
form factors such as tablets.
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There are other stylus-based streams of data that could also be useful for unintended
touch. Tablets today supporting active styli provide “pretouch” information in the form
of an X,Y hover cursor. While they have information regarding the height of the stylus
from the screen, this information is not yet available for use by developers. The avail-
ability of this information would provide a better picture of the time remaining before
the stylus, hand, or forearm touch the screen. This information would also allow for
a plethora of proximity-based interaction techniques. Integration of additional sensor
information, such as pen roll or tilt, or the pressure or grip on the barrel of the pen
[Hinckley et al. 2013; Song et al. 2011] could also be useful when combined with the
application context. Developers, however, need to be mindful when integrating such
information, as the use of additional sensors comes at an increased cost, processing
time, and latency, and more complex signal processing.

When considering devices that only have a capacitive input layer, the increased pop-
ularity of axillary passive styli such as Pencil, Ink, Adnoit Jot Pro, and Pogo Connect,
may become an important key to solving unintended touch on such devices [Annett
2014a]. If these styli were also able to provide information about the stylus location,
similar to the Wacom Inkling [2014] or active styli, it may be possible to bring a coher-
ent, consistent user experience to both active and passive systems.

6.3. Necessary Hardware- and Software-Based Improvements

As alluded to, the availability and frequency with which information becomes available
for unintended touch will greatly influence the approaches that are possible. Today,
there is a very limited time frame to collect information and make a decision regarding
touch input. As system latencies decrease, it may be possible to allocate a few newly
“freed” frames to unintended touch, delaying the rejection decision for each touch event
by a few frames. This would allow touch input sizes to stabilize, more stylus data to
become available, and temporal-based approaches to be implemented. It will, however,
be a balancing act between maintaining a latency-free experience prone to false touch
events versus inducing latency and eliminating unintended touch.

Modifications of firmware or operating system APIs could allow developers to receive
a “rejection confidence level” along with each touch input or event. Such information
could be based on a variety of factors including sensor magnitudes, duration of activity,
and so on and would not introduce additional latency. There are also possibilities for
systems without disambiguation as well. Visualizations could indicate the confidence
a system or application has for various touch events it thinks may be unintended (e.g.,
those along the borders of an application or at spatially disjoint locations). Systems
could vary the opacity of strokes, use colored overlays, or display specific cursors to
illustrate how confident they are in the intentionality of strokes without removing them
from the screen. This could help make the user aware of behaviors that cause stray
markings or unintended navigations and possibly help them avoid such behaviors in
the future. Visualizations could also indicate which touch points are likely from the pen
and which are from the finger. Pairing these visualizations with a brushing, sweeping,
or swiping gesture could help users to quickly erase these extraneous markings.

The present study required that the tablet was flat on the table and oriented toward
the user in landscape mode, with only a small rotation permitted. Although rotation
was corrected for in the dataset, tablets today do not have such capabilities. If tablets
could report their current rotation and orientation instead of simply reporting “portrait”
or “landscape,” developers could harness this information to improve the robustness
of their unintended touch solutions while opening the possibility for new interaction
techniques and functionalities. There are many instances where the tablet may not
be flat (e.g., when held, sitting vertically, or resting on the lap [Wagner et al. 2012]),
when the user could be interacting upside down (e.g., by reaching across the table to
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interact with someone else’s device), or the tablet could be continually rotated, similar
to the behavior found with artists while sketching [Fitzmaurice et al. 1999]. In these
scenarios, algorithms making use of spatial information would fail, even the ones that
rely on hand models. The present study did not focus on gathering information on the
behavioral and postural changes that tablet rotation and orientation would produce.
For this reason, it is imperative that developers carefully consider how such behaviors
may influence unintended touch in these contexts.

The study also assumed that the tablet was handedness-aware and ignored the
details necessary to collect this information. While some applications utilize user in-
terface widgets and dialogs to gather such information, there has already been much
work on the automatic detection of handedness [Dang et al. 2009; Ewerling et al. 2012;
Ramakers et al. 2012; Wang et al. 2009; Zhang et al. 2012]. In addition to these ap-
proaches, the data collected from the digitizer suggests that it may be possible to detect
handedness at the firmware level, by simply using the movement of touch blobs over
time or their spatial relation to the stylus location. A firmware-based approach would
eliminate the need for external cameras, augmented setups, sensors, or user interface
interventions while providing valuable information for unintended touch, occlusion-
free interfaces, and novel adaptive interface widgets. This exploration is left for future
work.

As detailed in Section 3, companies including Atmel [2014], Samsung [SmartKeitai
2013], and Synaptics [Coldewey 2011; Sage 2011] have announced improvements in
digitizer signal-to-noise ratios that have enabled better disambiguation between thin,
narrow inputs (e.g., from a stylus) and larger, wider input (e.g., from fingers and palms).
Once such approaches and technology exits the prototype stage and differentiated
passive styli become available, it would be useful to explore more dynamic approaches to
unintended touch, especially in light of the increased vocabulary of gestural commands
that are becoming possible with these devices [Marquardt et al. 2011; Wigdor et al.
2011; Yan et al. 2013].

7. CONCLUSIONS

With stylus-enabled devices today, the inking experience is largely marred by the
problem of unintended touch. Digitizers and applications have a difficult time distin-
guishing those touch events that are desired from those that are unintended. When
unintended touch persists, it hampers a user’s ability to interact naturally with their
device and restricts the transfer of their learned behaviors from paper and pen to the
digital world. This work has presented an in-depth analysis of unintended touch from
both an algorithmic and a user behavior perspective.

The use of a motion capture system, along with raw data from touch and stylus
digitizers allowed for an evaluation of a variety of approaches to unintended touch.
In the evaluation, many novel behaviors were observed: the maximum time possible
for unintended touch decisions, the typical height of the stylus during unimanual or
bimanual gestural interaction, and the pattern and location of touch events. These
observations were found to be important for understanding the effectiveness of various
approaches and can also be useful for pen computing in general.

The analysis revealed that some current approaches, that limit the “safe” areas
of the screen, such as the use of hand models or the size of touch contacts do not
fare well, while others that allow for larger rejection regions such as hover or those
specified by the location of the stylus, demonstrate much better performance. Deriving
a general solution to solve unintended touch is difficult and influenced by factors
relating to desired interaction and functionality, and information availability. Rejecting
unintended touch should be made much easier in the future, however, when pretouch,
handedness, device rotation, and orientation information are available for integration.
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Such data will allow ample time to integrate and synthesize data before the skin has
touched the surface of the screen, thus enhancing the pen and touch user experience.
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